公钥分配与椭圆曲线密码:单位元与逆元在现代密码学中的应用

需积分: 50 9 下载量 10 浏览量 更新于2024-08-22 收藏 1.36MB PPT 举报
在密码学课件"单位元和逆元"中,核心概念主要集中在公钥密码体制中的关键概念和密钥管理。首先,我们讨论了逆元的概念,它在椭圆曲线密码(ECC)中具有重要地位。在椭圆曲线算术中,逆元P'对于点P来说,满足关系P'(x, -y) = P(x, y),即关于X轴对称,这是实现公钥加密协议如Diffie-Hellman密钥交换的基础。这一协议的安全性依赖于离散对数问题的难以破解,即通信双方使用各自的公钥计算出共享的密钥,前提是双方身份的真实性得到保证。 接着,课件强调了公钥密码在密钥分配问题上的应用,特别是解决传统密码体制中密钥分发的挑战。公钥密码有两大用途:公钥的分配和作为传统密码体制密钥分配的手段。为了确保安全性,公钥分配需要采取措施防止伪造。一种方法是通过公开可访问的目录,用户将自己的公钥公开,但存在被伪造的风险。为增强安全性,可以采用动态可访问的公钥目录,由可信的实体或组织维护,用户通过安全方式注册并定期更新他们的公钥。然而,目录的安全性依赖于目录管理员的私钥保护,一旦被泄露,可能导致重大的安全威胁。 10.1.1节深入探讨了密钥管理中的公钥分配,提倡通过自由的公钥发布来促进信息共享,同时强调了维护公钥目录的重要性。通过目录,用户可以在不暴露原始密钥的情况下进行安全通信。然而,这也意味着必须妥善处理私钥保护,以防止被恶意利用。 本课程内容围绕公钥密码体制的理论基础、关键算法(如Diffie-Hellman协议)以及在实际应用中的密钥管理策略展开,着重介绍了如何通过公钥分配和公钥目录来确保信息安全,同时揭示了潜在的安全隐患和防范措施。这些知识点对于理解现代密码学的实践应用具有重要意义。

解释以下代码:@staticmethod def multiply(a, n, N, A, P): return SM2Key.fromJacobian(SM2Key.jacobianMultiply(SM2Key.toJacobian(a), n, N, A, P), P) @staticmethod def add(a, b, A, P): return SM2Key.fromJacobian(SM2Key.jacobianAdd(SM2Key.toJacobian(a), SM2Key.toJacobian(b), A, P), P) @staticmethod def inv(a, n): if a == 0: return 0 lm, hm = 1, 0 low, high = a % n, n while low > 1: r = high // low nm, new = hm - lm * r, high - low * r lm, low, hm, high = nm, new, lm, low return lm % n @staticmethod def toJacobian(Xp_Yp): Xp, Yp = Xp_Yp return Xp, Yp, 1 @staticmethod def fromJacobian(Xp_Yp_Zp, P): Xp, Yp, Zp = Xp_Yp_Zp z = SM2Key.inv(Zp, P) return (Xp * z ** 2) % P, (Yp * z ** 3) % P @staticmethod def jacobianDouble(Xp_Yp_Zp, A, P): Xp, Yp, Zp = Xp_Yp_Zp if not Yp: return 0, 0, 0 ysq = (Yp ** 2) % P S = (4 * Xp * ysq) % P M = (3 * Xp ** 2 + A * Zp ** 4) % P nx = (M ** 2 - 2 * S) % P ny = (M * (S - nx) - 8 * ysq ** 2) % P nz = (2 * Yp * Zp) % P return nx, ny, nz @staticmethod def jacobianAdd(Xp_Yp_Zp, Xq_Yq_Zq, A, P): Xp, Yp, Zp = Xp_Yp_Zp Xq, Yq, Zq = Xq_Yq_Zq if not Yp: return Xq, Yq, Zq if not Yq: return Xp, Yp, Zp U1 = (Xp * Zq ** 2) % P U2 = (Xq * Zp ** 2) % P S1 = (Yp * Zq ** 3) % P S2 = (Yq * Zp ** 3) % P if U1 == U2: if S1 != S2: return 0, 0, 1 return SM2Key.jacobianDouble((Xp, Yp, Zp), A, P) H = U2 - U1 R = S2 - S1 H2 = (H * H) % P H3 = (H * H2) % P U1H2 = (U1 * H2) % P nx = (R ** 2 - H3 - 2 * U1H2) % P ny = (R * (U1H2 - nx) - S1 * H3) % P nz = (H * Zp * Zq) % P return nx, ny, nz @staticmethod def jacobianMultiply(Xp_Yp_Zp, n, N, A, P): Xp, Yp, Zp = Xp_Yp_Zp if Yp == 0 or n == 0: return (0, 0, 1) if n == 1: return (Xp, Yp, Zp) if n < 0 or n >= N: return SM2Key.jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P) if (n % 2) == 0: return SM2Key.jacobianDouble(SM2Key.jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P) if (n % 2) == 1: mv = SM2Key.jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P) return SM2Key.jacobianAdd(SM2Key.jacobianDouble(mv, A, P), (Xp, Yp, Zp), A, P)

144 浏览量

用C语言编写该程序设明文字母表为:p={p0,p1,…,pn-1}密文字母表:c={c0,c1,…,cn-1} 引入两个参数 a、b,要求a和n互素,即gcd(a,n)=1;加密算法:ci=E(Pi)=(a*pi+b)modn在解密时,首先需求解a在有限域Zn上的乘法a-1∈Zn,可用欧几里得算法求解;解密算法:pi=D(ci)=a-1(ci-b)modn(1)取明文空间和密文空间为26个英文字母表,其大小为n=26;(2)求出集合{0,1,2,3,…,25}中所有与26互素的数,并从中任取一个,作为a。另外,任取b∈{0,1,2,3,…,25};输出a和b;(3)求出a在有限域Zn上的乘法a-1∈Zn;(4)从键盘输入一个字符串,长度约为15字符。然后按照a b c d e f g h i j k l m n o p q r s t u v w x y z分别对应0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25的方式,将明文转换为数字序列(不区分大小写,并忽略空格);(5)对第(4)步得到的数字序列逐数字加密,得到密文数字序列;(6)按照第(4)步中的映射方式,将第(5)步得到的数字序列映射为字母序列(即密文),并输出密文;(7)按照第(4)步中的映射方式,将第(6)步得到的密文序列映射为数字序列;(8)按照解密算法,对第(7)步得到的数字序列逐数字解密,得到明文数字序列;(9)按照第(4)步中的映射方式,将第(8)步得到的数字序列映射为字母序列(即明文),并输出。

200 浏览量
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部