基于道格拉斯算法的时空数据有损压缩技术

需积分: 23 1 下载量 114 浏览量 更新于2024-08-08 收藏 573KB PDF 举报
"时空数据的有损压缩算法 (2013年)" 本文主要探讨了一种针对时空数据的有损压缩算法,该算法是基于经典的道格拉斯算法(Douglas Algorithm)进行优化和改进的。道格拉斯算法是一种用于处理曲线简化和压缩的经典方法,主要用于减少多边形边的数量,同时保持其整体形状。在时空数据领域,这种压缩技术对于存储和传输大量空间和时间信息至关重要,尤其是在地理信息系统(GIS)、遥感和移动定位服务等领域。 该有损压缩算法的核心在于通过等间隔时间变化来处理数据,即在满足一定欧式距离阈值的前提下,对空间数据的关键特征点进行选择和保留。这种方法能够有效地减少数据的冗余,降低数据量,从而提高压缩效率。在实施过程中,算法不仅考虑了空间坐标的变化,还结合了时间维度的信息,确保了在压缩后的数据仍然能准确地反映原始时空轨迹的基本特征。 算法的改进之处在于减少了计算量,提高了运行速度,这使得它更适合于实时或近实时的数据处理需求。较高的压缩比意味着在存储和传输上可以节省更多的资源,这对于大数据时代的应用来说具有显著的优势。同时,由于保留了关键特征点,解压后的数据仍能保持一定的精度,满足了许多应用场景的需求。 关键词中的"时空"指的是空间和时间的综合数据,"有损"是指在压缩过程中会丢失部分信息,"压缩"是数据处理的目标,"矢量曲线"指的是数据可能以向量形式表示的几何轨迹,"实现"则意味着该算法已经具备了实际操作的可能性。 中图分类号"TP274"表明该论文属于计算机科学技术的软件工程领域,"文献标识码"A则代表这是一篇具有学术价值的研究文章。 随着空间数据库和GIS技术的发展,时空数据的处理变得越来越重要。这种有损压缩算法的提出,不仅解决了大数据量带来的挑战,也为时空数据分析、模式识别以及决策支持提供了有效工具。在城市规划、交通管理、环境监测等多个领域,这样的压缩技术都有广泛的应用前景。