没有合适的资源?快使用搜索试试~ 我知道了~
首页Silvaco TCAD教程:全面器件特性仿真实例与程序
本文档是Silvaco TCAD教程与示例的第一卷,由Silvaco International公司发布,地址位于美国加利福尼亚州圣克拉拉市。它提供了关于Silvaco TCAD(Technology Computer-Aided Design)的全面介绍和实践案例,适用于学习者深入理解和掌握该领域的模拟技术。TCAD是一种强大的电子设计工具,用于模拟半导体器件在不同结构下的行为,包括但不限于晶体管、二极管、场效应管等。
该教程包含了丰富的例子,覆盖了诸如器件建模、材料属性设置、电荷传输分析、电流密度分布、温度影响等多个关键环节。学习者能够通过这些实例了解如何使用Silvaco软件进行器件特性仿真,例如,模拟器件在不同工艺条件下的性能变化,优化器件设计,以及解决实际应用中的问题。
文档强调,所有信息仅限于学习目的,未经授权复制或分发需事先告知Silvaco International,以确保版权的尊重。此外,文档还附带了注意事项,指出Silvaco International不对文档中的错误或不适合特定用途的情况提供任何保证,用户在使用时应自行承担风险。
阅读此教程,用户将获得以下知识:
1. **Silvaco TCAD基础知识**:介绍软件的主要功能和工作原理,以及它在集成电路设计流程中的角色。
2. **器件结构模型**:如何创建和配置不同的半导体器件模型,如PN结、金属-氧化物-半导体(MOS)结构等。
3. **模拟方法**:掌握数值模拟技术,包括网格划分、边界条件设定、求解算法等。
4. **性能参数分析**:学习如何计算和解读诸如阈值电压、载流子迁移率、电导率等关键参数。
5. **应用案例**:通过具体案例解析,理解如何解决实际设计中的问题,如优化器件尺寸、改进散热设计等。
6. **版权和使用限制**:理解版权政策和软件许可条款,确保合法合规使用。
这份文档对于希望深入研究和实践Silvaco TCAD的工程师和学生来说是一份宝贵的资源,它提供了从理论到实践的完整学习路径。
SILVACO International XVII
Volume One/Chapter 1
Figure 1.1: Geometry and Doping of 0.6um n-channel MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
Figure 1.2: NMOS Id/Vgs curve for extracting threshold voltage and linear gain . . . . . . . . . . . . . . . . . . . . . .1-3
Figure 1.3: Junctions and materials in NMOSFET simulated in ATHENA . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-8
Figure 1.4: Family of ID/VDS curves from an n-channel MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-8
Figure 1.5: Sub-threshold swing extraction from a log(Id) vs Vgs plot.
The 4145 emulator feature of TonyPlot is used to get the slope . . . . . . . . . . . . . . . . . . . . . . . . .1-13
Figure 1.6: Drain voltage dependence of Vt for a NMOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-18
Figure 1.7: Body effect showing bulk voltage dependence of Vt for an NMOSFET . . . . . . . . . . . . . . . . . . .1-23
Figure 1.8: NMOS substrate current curve using energy balance models . . . . . . . . . . . . . . . . . . . . . . . . . .1-29
Figure 1.9: NMOS breakdown simulation. Slope of curve indicates a
punchthrough effect as well as an avalanche effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-35
Figure 1.10: Contours of impact ionization in the MOSFET at the BV point . . . . . . . . . . . . . . . . . . . . . . . . . .1-35
Figure 1.11: Junction and Material boundaries for a P-channel MOSFET.
This device has a buried channel due to p-implant under the gate . . . . . . . . . . . . . . . . . . . . . .1-41
Figure 1.12: Contours of doping in the PMOS transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-41
Figure 1.13: PMOS Id/Vgs curve for extracting threshold
voltage and linear gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-42
Figure 1.14: Family of ID/VDS curves from a p-channel MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-47
Figure 1.15: Sub-threshold swing extraction from a log(Id) vs
Vgs plot for PMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Figure 1.16: Drain voltage dependence of Vt for a PMOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-58
Figure 1.17: Body effect showing bulk voltage dependence
of Vt for a PMOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-64
Figure 1.18: NMOS substrate current curve using energy balance models . . . . . . . . . . . . . . . . . . . . . . . . .1-70
Figure 1.19: PMOS breakdown simulation. The clear breakdown point on
the curve indicates a primarily avalanche breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-77
Figure 1.20: Contours of impact ionization in the POSFET at the BV point. The
depletion edges around the junctions are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-77
Volume One/Chapter 2
Figure 2.1: Doping and Geometry on an NMOSFET defined using
ATLAS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2
Figure 2.2: DC Output Voltages from first stage (o) and second stage
(x) inverters in a chain using MIXEDMODE simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2
Figure 2.3: Output Voltages from first stage (o) and second stage (x) inverters
during a transient switching simulation in MIXEDMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3
Figure 2.4: MOSFET Geometry and Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Figure 2.5: Gate and Drain Voltages during switching transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-9
Figure 2.6: Drain current during turn-on transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-10
Figure 2.7: 2D channel edge and field structure simulated in ATHENA. This
is a simulation across the width of a MOSFET in the
center of the channel length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-14
Figure 2.8: IdVg curve from 3D MOSFET including width effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-15
List of Figures:
www.cadfamily.com EMail:cadserv21@hotmail.com
The document is for study only,if tort to your rights,please inform us,we will delete
Technology-Dependent TCAD Tutorial and Examples
XVIII SILVACO International
Figure 2.9: Geometry and Mesh of the 3D MOSFET formed in DevEdit3D
using the ATHENA channel width simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Figure 2.10: Carrier concentration in the 3D MOS channel. The field
and gate oxide are removed for clarity. Note the inversion under
the bird’s beak that might lead in inverse width effect on Vt . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Figure 2.11: Effect of including lattice heating in a submicron MOS Id/Vds
simulation using energy balance models. Local heating
suppresses impact ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Figure 2.12: Geometry, mesh and doping of a 1.0um MOSFET
simulated in ATHENA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Figure 2.13: NMOS Snapback at zero gate bias using the CURVETRACE feature. . . . . . . . . . . . . . . . . . . . . 2-37
Figure 2.14: MOS second breakdown and snapback using
non-isothermal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
Figure 2.15: Gate/Drain overlap capacitance can be simulated to extract
CGDO and other intrinsic capacitance SPICE Model parameters . . . . . . . . . . . . . . . . . . . . . . . 2-46
Figure 2.16: 2D NMOS Transistor defined in ATLAS syntax from 1D
SSUPREM3 process simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
Figure 2.17: Contours of Electric field in a MOSFET at breakdown.
A zero carrier solution was used in the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
Figure 2.18: Electric field lines displayed with electric field contours,
junctions and depletion edges. Ionization rate is integrated along
each field line to determine the ionization integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
Figure 2.19: SiGe MOSFET simulated in ATHENA. The 1D plot (right)
shows the doping profile with doped layer under the channel. . . . . . . . . . . . . . . . . . . . . . . . . . 2-60
Figure 2.20: Threshold voltage curve for the SiGe PMOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
Figure 2.21: SiGe MOSFET defined using ATLAS syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
Figure 2.22: Breakdown curve of SiGe PMOS device using lattice
heating and energy balance models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
Figure 2.23: Potential contours at the breakdown point in the SiGe PMOSFET . . . . . . . . . . . . . . . . . . . . . . 2-67
Figure 2.24: Comparison of Id/Vgs curve for three surface mobility models . . . . . . . . . . . . . . . . . . . . . . . . 2-72
Figure 2.25: Channel Mobility versus Field plots extracted using the
PROBE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-72
Figure 2.26: 2D contours of Mobility for CVT(left), SHI(center) and MOD.
WATT(right) models. Although mobility can be plotted in 2D,
the PROBE statement is best for getting accurate values
for every bias point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
Figure 2.27: Standard C-V characteristic of a MOS capacitor at 100MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77
Figure 2.28: Comparison of C-V characteristics of a MOS capacitor
with different poly gate doping concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79
Figure 2.29: 2D plot of a simple MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82
Figure 2.30: Comparison of Gate Current versus Gate Voltage
characteristics for different poly gate doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83
Volume One/Chapter 3
Figure 3.1: Structure of Poly Emitter Bipolar Transistor including dopant
junctions, regions and electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 3.2: Gummel Plot from Bipolar Device. Gain can be calculated
from a function of the collector and base currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 3.3: 3D Bipolar Structure showing electrode locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
www.cadfamily.com EMail:cadserv21@hotmail.com
The document is for study only,if tort to your rights,please inform us,we will delete
SILVACO International XIX
List of Figures
Figure 3.4: Gummel Plot from a 3D Bipolar simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-7
Figure 3.5: Structure of Poly Emitter Bipolar Transistor including
dopant junctions, regions and electrodes. The structure differs
from the first bipolar example by having two base contacts.
This structure has been remeshed in DevEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Figure 3.6: Gummel Plot from the double base BJT. Gain is calculated by
dividing collector current by the sum of the two base currents . . . . . . . . . . . . . . . . . . . . . . . . .3-12
Figure 3.7: Planar bipolar device defined using ATLAS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-17
Figure 3.8: Gummel Plot from the planar bipolar device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Figure 3.9: Families of Ic/Vce curves for various Ib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-18
Figure 3.10: Doping profile and junctions of planar bipolar
device defined using ATLAS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-22
Figure 3.11: BVCEO curve for the planar bipolar device. Onset of break-
down is clear from the curve. In ATLAS it is not always necessary
to simulate the high current levels test equipment use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-23
Figure 3.12: Frequency Response of Bipolar Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-26
Figure 3.13: Transient switching of collector current in 3D bipolar transistor . . . . . . . . . . . . . . . . . . . . . . .3-28
Figure 3.14: Poly emitter PNP BJT showing junction and electrode location . . . . . . . . . . . . . . . . . . . . . . . .3-33
Figure 3.15: Gummel Plot for PNP device. Gain can be extracted
from a function as Ic/Ib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-34
Figure 3.16: Ic/Vce curves for PNP device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-34
Figure 3.17: Device Structure and doping as input to the
MIXEDMODE simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-40
Figure 3.18: Switching waveforms from the ECL inverter simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-41
Figure 3.19: 2D Bipolar Structure and doping created in ATLAS from
multiple 1D SSUPREM3 process simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-45
Figure 3.20: Extracted ATLAS results from device using SSUPREM3 doping . . . . . . . . . . . . . . . . . . . . . . . .3-45
Figure 3.21: Comparison of 2D and 3D results for bipolar device.
Current crowding at high Vbe causes a reduction in
current compared with a 2D approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-53
Volume One/Chapter 4
Figure 4.1: Doping for Schottky Diode Structure. The Anode is a
Schottky contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
Figure 4.2: Forward characteristics of the Schott ky diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Figure 4.3: Structure and doping of an abrupt doping diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
Figure 4.4: Breakdown and Second Breakdown of the diode. NEB Models
allow simulation of the second breakdown
behavior through heating effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
Figure 4.5: Diode breakdown curve traced out by the CURVETRACE feature.
Note the non-uniform voltage steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Figure 4.6: Forward Characteristics of SiC diode at two temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
Figure 4.7: Reverse Breakdown of SiC diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
Figure 4.8: Zener diode structure, mesh and doping defined in ATHENA . . . . . . . . . . . . . . . . . . . . . . . . . .4-18
Figure 4.9: Reverse breakdown of Zener diode.
Note the ‘soft’ breakdown starting at -4V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18
Figure 4.10: Doping in a 3D Diode defined in DEVICE3D syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-21
Figure 4.11: Forward simulation of diode in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-21
Figure 4.12: 3D current density plot shows current crowding
www.cadfamily.com EMail:cadserv21@hotmail.com
The document is for study only,if tort to your rights,please inform us,we will delete
Technology-Dependent TCAD Tutorial and Examples
XX SILVACO International
at the corners of the high doped region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Figure 4.13: Vectors show the 3D distribution of Electric Field in the Diode . . . . . . . . . . . . . . . . . . . . . . . . 4-22
Figure 4.14: DC IV Curve for Gunn Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Figure 4.15: Transient Oscillation Behavior of the Gunn Diode at 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Figure 4.16: Transient Oscillation Behavior of the Gunn Diode at 4V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Figure 4.17: Sequence showing the ‘waves’ of carriers moving though
the Gunn Diode. The Movie feature in TonyPlot can be used to
animate the carrier flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Figure 4.18: Anode current versus anode voltage of a 3D Diode both
with and without lattice heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
Figure 4.19: Maximum semiconductor temperature versus anode
voltage for the 3D diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33
Figure 4.20: Increase in anode leakage current as the ambient
lattice temperature is increased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
Figure 4.21: Plot of electron and hole mobility as a function of
ambient lattice temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Volume One/Chapter 5
Figure 5.1: Doping and Geometry of a partially depleted SOI device
defined using ATLAS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Figure 5.2: Id/Vgs curve from the partially depleted SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Figure 5.3: Subthreshold behavior of the PD-SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Figure 5.4: Doping and Geometry of a fully depleted SOI device
defined using ATLAS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Figure 5.5: Regions and junction for the FD-SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Figure 5.6: SOI device defined using variable substitutions in ATLAS.
The layer thicknesses can be scaled by altering a single number
in the input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Figure 5.7: Leakage current from a typical SOI case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Figure 5.8: Regions and junctions for a PD-SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Figure 5.9: Id/Vds curves showing the ‘kink’ effect at various Vgs for PD-SOI . . . . . . . . . . . . . . . . . . . . . . 5-14
Figure 5.10: Geometry and junction for a FD-SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Figure 5.11: Demonstration of the effect of lattice heating (lower curve)
on Id/Vds. Heating the SOI film causes negative conductance . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Figure 5.12: Contours showing heated SOI film. Heat sink is at the bottom
below the BOX insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Figure 5.13: Thin film SOI device defined in ATLAS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Figure 5.14: Demonstration of the effect of lattice heating (lower curve)
on breakdown behavior. Heating the SOI film suppresses impact
ionization and increases breakdown voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Figure 5.15: Id/Vgs for 3D SOI device including width effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29
Figure 5.16: Id/Vds curve for PD-SOI with body contact. The expected
kink is eliminated due to current flow to the body contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30
Figure 5.17: Current through body contact during Id/Vds sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30
Figure 5.18: Sub-micron SOI structure and doping defined in ATHENA.
Film isolation using LOCOS is also simulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
Figure 5.19: Id/Vds curve from the processed device. Kink and
strong avalanche are seen at low Vgs. At higher Vgs lattice
heating suppresses these effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
www.cadfamily.com EMail:cadserv21@hotmail.com
The document is for study only,if tort to your rights,please inform us,we will delete
剩余515页未读,继续阅读
2010-03-14 上传
2022-06-02 上传
2022-06-02 上传
2022-06-02 上传
2023-03-07 上传
点击了解资源详情
点击了解资源详情
xinxi1125
- 粉丝: 2
- 资源: 3
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 探索数据转换实验平台在设备装置中的应用
- 使用git-log-to-tikz.py将Git日志转换为TIKZ图形
- 小栗子源码2.9.3版本发布
- 使用Tinder-Hack-Client实现Tinder API交互
- Android Studio新模板:个性化Material Design导航抽屉
- React API分页模块:数据获取与页面管理
- C语言实现顺序表的动态分配方法
- 光催化分解水产氢固溶体催化剂制备技术揭秘
- VS2013环境下tinyxml库的32位与64位编译指南
- 网易云歌词情感分析系统实现与架构
- React应用展示GitHub用户详细信息及项目分析
- LayUI2.1.6帮助文档API功能详解
- 全栈开发实现的chatgpt应用可打包小程序/H5/App
- C++实现顺序表的动态内存分配技术
- Java制作水果格斗游戏:策略与随机性的结合
- 基于若依框架的后台管理系统开发实例解析
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功