引力搜索算法优化无线可充电传感器网络覆盖策略
需积分: 9 196 浏览量
更新于2024-08-09
收藏 454KB PDF 举报
"这篇研究论文探讨了无线可充电传感器网络的有效覆盖问题,利用引力搜索算法(GSA)寻求最小改造点,以优化网络性能。在无线可充电传感器网络(WRSN)中,移动充电器用于为传感器节点补充能量,解决其能源限制。作者提出了一种线性规划(LP)模型,并设计了一种考虑三个相互矛盾目标的适应度函数:最小化停留点数量、最大化覆盖范围和最小化停留点与请求传感器节点间的距离。实验结果将引力搜索算法与差分进化(DE)进行了对比分析。"
本文重点探讨了无线可充电传感器网络的关键问题——如何有效地实现传感器节点的覆盖并确保其能量供应。无线传感器网络通常由大量能源有限的节点组成,而WRSN引入了移动充电器,可以动态地为这些节点充电,从而延长网络的运行时间。为了优化这种网络的性能,研究者提出了基于引力搜索算法的解决方案。
引力搜索算法(GSA)是一种受到牛顿万有引力定律启发的全局优化算法。该算法模拟物体间的引力交互,通过粒子间的吸引和排斥力来寻找最优解。在本研究中,GSA被用来寻找网络中的最小改造点,即移动充电器最理想的停留位置,以最大化对传感器节点的覆盖范围。
论文中,作者构建了一个线性规划模型,以数学形式表述优化问题。线性规划是一种求解最优化问题的数学方法,能有效地处理多目标优化问题,尤其适合处理具有线性目标函数和线性约束条件的问题。
适应度函数在遗传算法和进化计算中是至关重要的,它用于评估解决方案的质量。在本研究中,适应度函数综合了三个目标:(1)最小化移动充电器的停留点数量,以减少其运动和充电过程中的能耗;(2)最大化网络覆盖范围,确保更多的传感器节点能够得到服务;(3)最小化停留点与需要充电的传感器节点之间的距离,减少能量在传输过程中的损失。
为了验证所提方法的有效性,研究者将GSA的结果与差分进化(DE)进行了比较。DE是一种强大的全局优化算法,通过迭代过程不断改进初始种群,寻找最佳解决方案。通过对比两种算法的性能,可以评估GSA在解决WRSN覆盖问题上的优势。
这篇论文为无线可充电传感器网络的优化提供了新的视角,利用引力搜索算法寻求能量管理策略,以提高网络覆盖效率和整体性能。这种方法对于未来智能城市、环境监测、工业自动化等领域的无线传感器网络设计和优化具有重要指导意义。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2024-04-17 上传
2021-09-28 上传
2019-07-22 上传
2021-05-01 上传
2024-10-19 上传
点击了解资源详情
weixin_38651450
- 粉丝: 1
- 资源: 921
最新资源
- MATLAB新功能:Multi-frame ViewRGB制作彩色图阴影
- XKCD Substitutions 3-crx插件:创新的网页文字替换工具
- Python实现8位等离子效果开源项目plasma.py解读
- 维护商店移动应用:基于PhoneGap的移动API应用
- Laravel-Admin的Redis Manager扩展使用教程
- Jekyll代理主题使用指南及文件结构解析
- cPanel中PHP多版本插件的安装与配置指南
- 深入探讨React和Typescript在Alias kopio游戏中的应用
- node.js OSC服务器实现:Gibber消息转换技术解析
- 体验最新升级版的mdbootstrap pro 6.1.0组件库
- 超市盘点过机系统实现与delphi应用
- Boogle: 探索 Python 编程的 Boggle 仿制品
- C++实现的Physics2D简易2D物理模拟
- 傅里叶级数在分数阶微分积分计算中的应用与实现
- Windows Phone与PhoneGap应用隔离存储文件访问方法
- iso8601-interval-recurrence:掌握ISO8601日期范围与重复间隔检查