Python Scikit-learn实现Iris数据集SVM分类与精度评估
需积分: 0 7 浏览量
更新于2024-08-04
2
收藏 115KB PDF 举报
本资源是一份详细的Python代码示例,展示了如何使用Scikit-learn库来实现支持向量机(SVM)进行分类。它主要针对的是Iris数据集,这是一个经典的机器学习数据集,包含三种不同类型的鸢尾花的特征信息。
首先,代码导入了所需的库,包括Scikit-learn的`datasets`模块用于加载数据,`model_selection`模块中的`train_test_split`函数用于划分训练集和测试集,`svm`模块中的`SVC`类用于构建SVM模型,以及`metrics`模块的`accuracy_score`用于评估模型性能。
在数据预处理阶段,代码加载了Iris数据集,将特征数据存储在`X`变量中,目标变量存储在`y`中。接着,通过`train_test_split`函数将数据集分割为70%的训练集和30%的测试集,以确保模型泛化能力。
接着,创建了一个SVM分类器实例,设置了核函数为线性(`kernel='linear'`),正则化参数`C=1`,以及随机种子`random_state=0`,这些参数会影响模型的复杂度和决策边界的选择。
使用`fit()`方法对训练集进行拟合,使得模型能够学习到数据的内在规律。之后,使用`predict()`方法对测试集进行预测,并通过`accuracy_score()`计算分类器的准确率,这是衡量模型性能的重要指标。
最后,代码展示了如何获取支持向量的数量及其索引,支持向量是SVM中决定模型决策边界的最关键部分,数量和位置对于理解模型的复杂性和鲁棒性至关重要。
整个过程清晰地展示了如何用Python和Scikit-learn库来实现支持向量机,从数据加载、模型训练到性能评估,再到关键内部结构的探索,对于理解和应用SVM算法具有实际操作价值。这份代码可以作为学习和实践SVM的基础模板,并可用于其他类似分类任务。
2023-04-03 上传
2021-09-30 上传
2023-05-12 上传
2022-06-14 上传
2008-12-04 上传
2021-09-24 上传
2024-07-18 上传
2022-11-28 上传
2024-04-14 上传
小正太浩二
- 粉丝: 237
- 资源: 5943
最新资源
- 俄罗斯RTSD数据集实现交通标志实时检测
- 易语言开发的文件批量改名工具使用Ex_Dui美化界面
- 爱心援助动态网页教程:前端开发实战指南
- 复旦微电子数字电路课件4章同步时序电路详解
- Dylan Manley的编程投资组合登录页面设计介绍
- Python实现H3K4me3与H3K27ac表观遗传标记域长度分析
- 易语言开源播放器项目:简易界面与强大的音频支持
- 介绍rxtx2.2全系统环境下的Java版本使用
- ZStack-CC2530 半开源协议栈使用与安装指南
- 易语言实现的八斗平台与淘宝评论采集软件开发
- Christiano响应式网站项目设计与技术特点
- QT图形框架中QGraphicRectItem的插入与缩放技术
- 组合逻辑电路深入解析与习题教程
- Vue+ECharts实现中国地图3D展示与交互功能
- MiSTer_MAME_SCRIPTS:自动下载MAME与HBMAME脚本指南
- 前端技术精髓:构建响应式盆栽展示网站