Simulink中神经网络控制器的训练与辨识方法
需积分: 27 109 浏览量
更新于2024-08-22
收藏 597KB PPT 举报
该资源是关于使用Simulink进行控制器神经网络辨识训练的仿真文件,涉及神经网络在控制系统中的应用。在Simulink环境中,可以通过神经网络工具箱的模块来构建和训练神经网络控制器。
在神经网络控制系统的设计中,Simulink提供了丰富的神经网络模块。这些模块包括:
1. **传输函数模块库(TransferFunctions)**:此库包含各种传输函数模块,用于处理网络输入向量并产生相应的输出向量,输出向量的维度与输入向量相同。
2. **网络输入模块库(NetInputFunctions)**:网络输入模块库的模块用于处理加权输入向量、层输出向量和偏置向量,生成网络输入向量。
3. **权值模块库(WeightFunctions)**:这些模块接收神经元的权值向量,与输入向量或层输出向量相乘,计算出神经元的加权输入。
4. **控制系统模块库(ControlSystems)**:这个库专门为控制系统设计,可能包含诸如PID控制器、状态观测器等模块,用于实现神经网络控制器的功能。
在控制器神经网络的训练过程中,首先通过【Generate Training Data】按钮生成随机阶跃信号来获取训练数据。然后,使用这些数据在图3-31的模型中点击【Train Controller】按钮对控制器进行训练。由于控制器通常涉及动态反馈算法,其训练过程可能比系统模型的训练更为复杂和耗时。
训练神经网络控制器时,需要注意权重的初始化、学习率的选择、训练算法的选取等因素,这些都会影响到网络的性能和收敛速度。同时,为了确保控制器的性能,可能需要进行多次迭代和参数调整。
通过Simulink的可视化界面,用户可以直观地构建神经网络结构,实时监控训练过程,并进行调试。这使得神经网络在控制领域的应用变得更加便捷和直观。在实际应用中,这种神经网络控制器可以用于各种复杂系统的控制任务,例如机器人控制、飞行控制、过程控制等,具有自适应和非线性处理能力,能提高控制系统的稳定性和性能。
107 浏览量
2009-03-28 上传
200 浏览量
点击了解资源详情
2021-10-31 上传
2019-01-03 上传
144 浏览量
2022-07-13 上传
252 浏览量
涟雪沧
- 粉丝: 21
- 资源: 2万+
最新资源
- Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现
- 深入理解JavaScript类与面向对象编程
- Argspect-0.0.1版本Python包发布与使用说明
- OpenNetAdmin v09.07.15 PHP项目源码下载
- 掌握Node.js: 构建高性能Web服务器与应用程序
- Matlab矢量绘图工具:polarG函数使用详解
- 实现Vue.js中PDF文件的签名显示功能
- 开源项目PSPSolver:资源约束调度问题求解器库
- 探索vwru系统:大众的虚拟现实招聘平台
- 深入理解cJSON:案例与源文件解析
- 多边形扩展算法在MATLAB中的应用与实现
- 用React类组件创建迷你待办事项列表指南
- Python库setuptools-58.5.3助力高效开发
- fmfiles工具:在MATLAB中查找丢失文件并列出错误
- 老枪二级域名系统PHP源码简易版发布
- 探索DOSGUI开源库:C/C++图形界面开发新篇章