Python预测分析全流程指南——掌握预测模型与Web部署

需积分: 14 1 下载量 12 浏览量 更新于2024-11-20 收藏 5.28MB ZIP 举报
资源摘要信息:"使用Python进行动手式预测分析" 本书详细介绍了如何使用Python语言及其生态系统中的工具和库来进行预测分析。预测分析是一种利用历史数据、统计分析技术、机器学习和数据挖掘对未来事件进行预测的过程。本书的目的是指导读者掌握预测分析的整个工作流程,从问题定义开始,一直到模型的部署。 一、预测分析的主要概念和原则 预测分析不仅仅是一门技术,它更是一种综合运用统计学、数学和计算机科学知识解决实际问题的方法论。核心原则包括理解业务问题、数据收集、数据清洗、特征工程、模型选择、训练、评估以及最终的模型部署。 二、完整的预测分析解决方案涉及的阶段 一个完整的预测分析流程可以分为以下阶段: 1. 问题定义:明确分析目标和业务问题。 2. 数据准备:收集数据并进行清洗、整合和转换。 3. 数据探索:通过数据可视化等手段深入理解数据集。 4. 模型构建:选择适合的算法建立模型。 5. 模型调整与优化:对模型进行调优以提高准确性。 6. 模型评估:使用不同的评估指标验证模型的效果。 7. 部署:将模型应用于实际生产环境中。 三、定义问题、提出解决方案及准备数据集 在预测分析项目中,明确问题并提出解决方案是至关重要的第一步。这需要对业务的深刻理解以及将业务问题转化为可操作的数据分析任务的能力。准备数据集时,需要考虑到数据的质量、完整性、代表性和是否符合模型的需求。 四、数据可视化和探索关系 通过数据可视化技术,可以直观地展示数据的分布、趋势和关系,为数据探索提供直观的依据。常用的可视化工具包括matplotlib、seaborn等,它们可以帮助我们更好地理解数据,发现问题,并为后续的数据处理提供依据。 五、使用scikit-learn建立模型 scikit-learn是Python中最流行的数据分析库之一,提供了包括回归、分类、聚类和降维在内的广泛机器学习算法。本书会教授如何使用scikit-learn库构建回归和分类模型,以及如何进行超参数调优和交叉验证等关键步骤。 六、使用Keras构建神经网络模型 Keras是一个高层神经网络API,支持快速试验。本书还将指导读者使用Keras来构建神经网络模型,解决更复杂的预测分析问题。神经网络在处理非线性和复杂数据结构方面具有独特的优势,能够提供准确的预测结果。 七、模型部署与Web应用程序服务 一旦模型被训练和验证,接下来的重要步骤就是模型的部署。本书将介绍如何将模型的预测结果作为Web应用程序服务,实现模型的最终应用。这通常涉及到模型的序列化、保存以及使用Flask或Django等Web框架将其部署到服务器上。 八、安装与环境准备 为了顺利运行本书中的代码,读者需要根据自己的操作系统下载并安装Python。书中可能会提供安装指令或脚本,以确保读者能在一个干净的环境中安装所有必要的库和依赖项。 九、Jupyter Notebook的使用 Jupyter Notebook是一个开源的Web应用,可以让用户创建和共享包含实时代码、方程、可视化和解释性文本的文档。通过Jupyter Notebook,本书将提供一个交互式的环境,使读者能够边学习边实践,更加直观地理解和掌握预测分析的各个方面。 通过以上知识点,读者将会掌握使用Python进行预测分析的一系列技术,从而能够独立设计和执行预测分析项目。
2019-05-12 上传
Hands-On Predictive Analytics with Python: Master the complete predictive analytics process, from problem definition to model deployment Author: Alvaro Fuentes Publisher: Packet Pub Date: Dec. 2018 ISBN: 978-1789138719 Pages: 330 Language: English Format: EPUB Size: 14 Mb 内含相关code压缩包 ----------------- Chapters Details: Chapter 1, The Predictive Analytics Process, presents the foundational concepts of the field, explains at a high level the different stages in the predictive analytics process, and gives an overview of the libraries we will use in the book. Chapter 2, Problem Understanding and Data Preparation, introduces the problems and datasets we will be using throughout the book and shows the basics of how to collect and prepare a dataset for modeling. Chapter 3, Dataset Understanding – Exploratory Data Analysis, shows how to get important information from a dataset using visualizations and other numerical techniques. Chapter 4, Predicting Numerical Values with Machine Learning, introduces the main ideas and concepts of machine learning and some of the most popular regression models. Chapter 5, Predicting Categories with Machine Learning, introduces some of the most important classification machine learning models. Chapter 6, Introducing Neural Nets for Predictive Analytics, shows how to build neural network models. These have become very popular because they are very powerful and are capable of producing highly accurate models.  Chapter 7, Model Evaluation, shows the main metrics and approaches you need to evaluate how good the predictions produced by a predictive model are.” “Chapter 6, Introducing Neural Nets for Predictive Analytics, shows how to build neural network models. These have become very popular because they are very powerful and are capable of producing highly accurate models.  Chapter 7, Model Evaluation, shows the main metrics and approaches you need to evaluate how good the predictions produced by a predictive model are. Chapter 8, Model Tuning and Improving Performance, presents important techniques such as K-fold cross-validation that will improve the performance of our predictive model. Chapter 9, Implementing a Model with Dash, shows how to build an interactive web application that will take input from the user and will use a trained predictive model to provide predictions.”
2018-05-27 上传
Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations.This course is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. Later you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this course illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.