快速稳健计算曲线交点的 MATLAB 函数

需积分: 27 5 下载量 117 浏览量 更新于2024-11-20 1 收藏 5KB ZIP 举报
资源摘要信息:"本资源涉及在MATLAB环境下开发的函数,该函数专注于计算两条曲线的交点。在数学和计算机图形学中,寻找曲线交点是常见的几何问题,其应用广泛,如图像处理、计算机辅助设计(CAD)以及各种科学可视化场景。对于那些具有纳米级断点或垂直线段的曲线,该函数同样能够有效处理,并且具有较高的计算效率,据开发者所述,至少在典型的代表性应用数据上表现出了优越的速度性能。 在数学上,曲线通常由参数方程或显式方程表示。为了确定两条曲线是否相交,需要解决一组方程以找到曲线之间公共点的坐标。对于简单的曲线,这可能是直接的;但对于复杂的曲线或曲线族,如包含不连续点或垂直线段的曲线,就变得相对困难。 在MATLAB这样的数学计算软件中,开发者可以利用其强大的数值计算和矩阵操作能力,编写出高效且直观的算法。MATLAB内置了大量用于科学计算的函数和工具箱,使得这类算法的开发和应用更加便捷。具体到本函数,它可能涉及到数值方法、线性代数以及图形学相关知识。 数值方法在这类问题中扮演着核心角色,因为找到精确的解析解可能非常复杂或甚至不可行。比如,牛顿法(Newton's method)和二分法(bisection method)都是常用的数值方法,可以帮助近似求解方程的根,进而找到曲线交点。为了处理曲线上的垂直线段或不连续点,算法可能还需要考虑曲线的局部特性,并适当调整求解策略。 线性代数则在算法的实现过程中扮演着基础支持的角色。例如,在处理曲线的参数方程时,经常需要解线性方程组来找到满足方程的参数值,进而求出曲线上的点。此外,矩阵运算在转换坐标系、处理不规则数据分布时也非常重要。 图形学知识对于理解曲线如何在二维或三维空间中表示,以及如何显示和处理这些曲线是必要的。这包括了解不同的曲线拟合技术,如贝塞尔曲线(Bezier curves)或样条曲线(spline curves),以及如何绘制和处理这些曲线。 除了上述数学和图形学基础之外,对于开发者来说,理解如何在MATLAB环境下高效地处理数据和矩阵运算也至关重要。MATLAB提供了丰富的内置函数和操作符,可以用于向量和矩阵的操作,这对于开发像计算曲线交点这样的函数来说是必不可少的。 最后,本资源提供的文件“intersections.zip”包含了相关的MATLAB函数代码。这是一个压缩包文件,用户需要解压缩后才能访问里面的文件。其中可能包括函数的主文件,以及可能的辅助函数、示例脚本或文档说明等。用户在使用该函数之前,应当详细阅读文档说明,并在有需要的情况下查看示例脚本以更好地理解函数的使用方法和预期效果。" 知识点概述: 1. 曲线交点计算的重要性与应用领域。 2. 数学基础:参数方程和显式方程的处理。 3. 数值方法:如牛顿法和二分法。 4. 线性代数:矩阵运算和方程组求解。 5. 图形学基础:曲线表示、拟合技术和绘图。 6. MATLAB编程:数据处理、矩阵操作和函数开发。 7. 文件结构说明:“intersections.zip”压缩包文件内容。
2019-08-12 上传
matlab离散点连成的两曲线的交点-intersections.m 本帖最后由 kastin 于 2012-12-29 11:47 编辑 引言     曾经思考过曲面求交,结果发现是学术界的一个难题,并且也想出了一个当前广泛使用方法原理一样的近似解法(追踪法)。当然网上也有很多方法,只不过那些方法非常粗糙,无非就是meshgrid出离散网格,比较两曲面在某位置的坐标是否在某一精度范围内,然后标记显示之。这个方法仅仅当离散网格非常细的时候才比较精确。除此之外,还有个非常严重的问题:上面的“精度范围”不是你随心所欲给的,而且也没规律寻找,当给得不恰当的时候,在格点处两曲面点作比较,会出很多个符合要求的点,或者一个也没有。这样就会使得交线非常曲折,甚至断裂等,严重影响精确度。 ———————————————————分割线————————————————————————     当然,既然有曲面求交,那么也有曲线求交,其基本结构就是两曲线求交。只是曲线求交问题,事先得澄清一些注意点:     1. 数学分析层面求两曲线交点,其实就是方程组求解;     2. “曲线”概念包括“直线”(处处曲率半径为无穷大);     3. Matlab的重点是离散点 矩阵运算,因此所有运算都是基于离散的,因而这里的曲线并不是绝对光滑的。     4. 近似试探与未知函数表达式。 对于1,我想说的是,如果你想要求得两曲线的精确交点,并且一个不漏,那就直接求解方程组,不用看本帖下文; 对于2,直线在Matlab里面是两个点确定,因此交点如果是一段线(无穷个点)的情况,可能只是显示两端点为交点; 对于3,很简单的例子,参数方程 x=cos,y=sin 在数学分析(即连续空间)层面上是个圆,但是如果你在离散t的时候,间距比较大,那么最后Matlab绘制的图像不是圆,而是正多边形了。因此,此时我们讨论曲线交点是这个离散点连线的图形与其他图形的交点,而非圆与其他交点。这也是我在标题中加了“离散点连成”的修饰词,防止被误会。 对于4,既然是求曲线交点,那么本方法可以作为求方程组的近似解。当然,如果离散点够多,解的精确度可以保证,不过不能保证一个不漏。另外就是,对于一组离散点构成的曲线,很难知道它们的解析表达式,因此想通过非线性方程组求解的方法来求交点,就不大可能了(不过你可以用曲线拟合出函数解析式),因此,本帖的方法将会是一个较为有效求交点的方法。     废话了那么多,下面就说说曲线求交点的方法吧。除了求解方程组,很多人想到的方法就是“离散点 判断距离是否足够接近”,这个方法原理跟引言中曲面求交的方法是一样的。因此缺点也是一样的——太粗糙了。网上这种方法的代码也很多,这里就不上了。 下面将阐述我的方法以及给出例子代码。     我有两种思路,一种是高级绘图层面的(不涉及到底层操作),一种是底层的。我只给出了第一种的代码,因为我不会底层操作。     思路一:既然matlab曲线绘图是通过有序离散点依次连线形成,也就是说,通过“以直代曲”的过程,那么曲线交点无非就是离散点(结点)或者两线段交点。这比上面直接用交点附近的结点替代交点的方法要精确得多了。而两直线交点很容易求,只要知道四个点坐标,那么交点精确坐标自然可以表示出来。这就是求交点的原理。只是还有一些细节处理和要注意的地方,我会留到后面再详细说。     思路二:仔细观察两曲线交点的特性,很容易发现,其实交点就是操作系统底层绘图重叠的那些像素点。因此,只要给要绘制的像素点做个标记,将那些重合的点突出显示(比如换个颜色),那么就相当于显示出交点了。这种方法由于是本质性的,因此不会遗漏任何交点,而且精确度极高,适用范围广。Matlab提供的plot plot3 surf等绘图函数都属于高级绘图,底层绘图(或称低级绘图)只有line surface以及patch等少数函数。但是,这里的“底层”并非真正的底层,因为它还是经过封装了的,而C 的MFC里面直接用刷子绘图,那才是依靠操作系统完成的真正的“底层”绘图操作(包括所有窗口都是操作系统绘制的)。这里扯远了,想要说明的就是底层绘图的概念而已。只是我不会用matlab实现这些底层绘图。     上面说了思路,下面就详细说说一些注意点和需要处理的细节。     为了算法的健壮性,就必须考虑各种奇异的情况,防止bug。我们要考虑曲线有分支(很多代数曲线是这样的,代数几何里面研究的东西)、间断跳跃(有绝对值函数或者存在渐近线情况)、首尾是交点、在切点相交,等等这些情况。而且对于定位交点处附近的四个最近端点也是个问题(因为这里存在一个情况,如果曲线1上的一条线段与曲线2上的两条或者以上的线段相交,我的程序因为这个问题没能有效解决,出现在一些非常特殊的情况下会遗漏部分交点)。上面的情况如果不考虑,那么你的程序就会出现各种各样的问题。     对于通常情况,我考虑使用变号法则来判断交点(也就是高数里面“连续函数变号端点内存在零点”),对于上面说的特殊情况,那么预先处理,比如先看是否存在eps内的,或者为零的结点,有则直接记录,没有的话,通过两线段求交来确定交点。至于遍历顺序的问题,为了简便,我指考虑两曲线离散点个数相同的情况(因为不同的话,会出现一些无法处理的情况),而且优先考虑离散点的坐标值中x或者y都相同的情况(比如x=0:0.1:pi; y1=sin, y2=x.^2这两条曲线的x值相同分布)。 下面是曲线y=cos.*exp)与y2=sin.^2 cos在[0:pi/18:2*pi]区间内的交点的代码: 注意:我没有写成接口的形式,虽然对于比那些较懒的人来说不太方便,但是这样做是为了让你能更好弄懂原理,并能自己改造代码。因此,下面的代码可以稍作修改,就能解决别的曲线求交点。这样,不愿思考的懒人就没法达到自己的目的了~% 绘制两离散曲线的交点 % 注意: %   1. 这里的“交点”指的是离散点连线绘出的图形的交点,而非函数或者方程理论分析上的交点, %      因此,这个程序不能作为求根来用。 %   2. 要求两曲线的离散点的个数一样。 %   3. 两个曲线出现参数方程的话,大多数情况正常。但是经测试发现,对于某些非常特殊的情况会出现bug, %      除非调用ezplot的数据(xdata,ydata)。 % %   by kastin @Mar 21, 2012 clear; debug=false; %关闭显示求交点过程 % 曲线1 x=0:pi/18:2*pi; y=cos.*exp); % 曲线2 [x1 N]=sort;  %此处对于C1参数方程,C2为显式函数;或者均为参数方程时候有用 % 下面几句代码在本个案下没有什么特殊作用,但是当出现参数方程的时候,下面的方法改动一下就会有用。 y1=sin.^2 cos; %用于作图 x2=x; y2=sin.^2 cos; %用于寻点 h=plot; y<=eps)=0; y20; neg=cy<=0; %确定变号位置 fro=diff~=0; %变号的前导位置 rel=diff~=0; %变号的尾巴位置 zpf=find; %记录索引 zpr=find 1; %记录索引 zpfr=[zpf; zpr]; hold on % 观看求交点过程 if debug, hp=plot,y,'r.-',x2,y2,'g.-'); end %线性求交 x0=.*-y)-x.*-y))./ y2-y-y2); y0=y ).*-y)./-x); if any), y0=y2; end %加入已经判断为零的位置 x0=[x<=eps) x0].'; y0=[y<=eps) y0].'; hc=plot; %绘制交点 if debug, legend;hp],'C1','C2','交点','微线段1','微线段2',0); end legend xlabel, ylabel, zlabel; title axis equal hold off disp disp) %排除重复的点复制代码经测试十几种奇怪的曲线相交(包括参数方程形式的曲线),目前发现上述代码的方法有四种情况会出现遗漏一两个交点。(其实上面代码本意是求显式函数的曲线交点,或者未知表达式的离散点曲线的交点,并未针对参数方程,隐函数方程做优化,但是可以凑合着用用。)