Python数据挖掘实战:第二版新手指南

需积分: 9 38 下载量 38 浏览量 更新于2024-07-17 1 收藏 4.95MB PDF 举报
"《Learning Data Mining with Python 第二版》是一本由 Robert Layton 编写的实用指南,专为希望学习和掌握数据挖掘技术的新手设计。本书以Python为主要工具,深入讲解如何处理和操作数据,以及如何构建预测模型。第二版更新了内容,包含丰富的实例和实战项目,使读者能够在实践中理解和应用数据挖掘理论。 在本书中,读者将学习到一系列关键知识点,包括但不限于: 1. Python基础知识:首先介绍Python编程语言的基础语法、数据类型和数据结构,为数据挖掘提供坚实的基础。 2. 数据预处理:涵盖数据清洗、缺失值处理、异常值检测以及数据转换等步骤,确保数据质量对模型性能的影响。 3. 数据可视化:利用Python库如Matplotlib和Seaborn展示数据,帮助理解数据分布和模式,便于发现潜在规律。 4. 机器学习算法:从基础的分类(如决策树、随机森林)到回归(线性回归、逻辑回归),再到聚类(K-means、DBSCAN)和深度学习(如神经网络)算法,读者将学会如何选择和应用不同的模型。 5. 模型评估与优化:理解评价指标(如准确率、精确率、召回率等)、交叉验证和网格搜索等方法,以改进模型性能。 6. 实际案例分析:通过具体行业案例,如推荐系统、金融风险分析或社交网络分析,让读者将所学知识应用于实际场景。 版权信息强调了该书的版权归属,所有复制、存储或传输未经事先书面许可均属违法,且作者和出版商不对因本书引起的直接或间接损害负责。同时,尽管努力保证信息准确性,但书中信息并非无条件担保,因为数据挖掘涉及的数据和信息可能存在变化。 《Learning Data Mining with Python 第二版》是数据科学入门者的理想选择,它不仅提供了实用的工具和技术,还强调了实践的重要性,帮助读者在数据驱动的世界中成为高效的数据挖掘专家。无论是对数据分析初学者还是希望提升技能的专业人士,这本书都是一个不可多得的学习资源。"
2015-08-20 上传
Harness the power of Python to analyze data and create insightful predictive models About This Book Learn data mining in practical terms, using a wide variety of libraries and techniques Learn how to find, manipulate, and analyze data using Python Step-by-step instructions on creating real-world applications of data mining techniques Who This Book Is For If you are a programmer who wants to get started with data mining, then this book is for you. What You Will Learn Apply data mining concepts to real-world problems Predict the outcome of sports matches based on past results Determine the author of a document based on their writing style Use APIs to download datasets from social media and other online services Find and extract good features from difficult datasets Create models that solve real-world problems Design and develop data mining applications using a variety of datasets Set up reproducible experiments and generate robust results Recommend movies, online celebrities, and news articles based on personal preferences Compute on big data, including real-time data from the Internet In Detail The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations. Table of Contents Chapter 1: Getting Started with Data Mining Chapter 2: Classifying with scikit-learn Chapter 3: Predicting Sports Winners with Decision Trees Chapter 4: Recommending Movies Using Affinity Analysis Chapter 5: Extracting Features with Transformers Chapter 6: Social Media Insight Using Naive Bayes Chapter 7: Discovering Accounts to Follow Using Graph Mining Chapter 8: Beating CAPTCHAs with Neural Networks Chapter 9: Authorship Attribution Chapter 10: Clustering News Articles Chapter 11: Classifying Objects in Images Using Deep Learning Chapter 12: Working with Big Data Appendix: Next Steps…