基于客户群体的产品配置规则挖掘

需积分: 7 0 下载量 46 浏览量 更新于2024-07-21 收藏 966KB PDF 举报
"这篇文章是关于将数据挖掘与粗糙集理论结合应用于客户群体产品配置规则的发现。由X.-Y. Shao、Z.-H. Wang、P.-G. Li和C.-X. J. Feng撰写,发表在国际生产研究期刊上,于2007年2月22日在线发布。" 在现代商业环境中,个性化产品配置已成为满足客户需求的关键。文章"customer group-based discovery of product configuration rules"探讨了如何整合数据挖掘技术和粗糙集理论来发现基于客户群体的产品配置规则。数据挖掘是一种从大量数据中提取有用信息和知识的方法,而粗糙集理论则是一种处理不确定性和不完整信息的数学工具。 文章的焦点在于如何利用这两种技术来理解不同客户群体对产品配置的偏好和需求。通过分析历史购买数据和用户反馈,数据挖掘可以识别出模式和趋势,揭示哪些配置选项在特定客户群体中更受欢迎。粗糙集理论则可以帮助处理数据中的模糊性和不确定性,如客户的模糊需求或部分信息,从而确定一组最优化的产品配置规则。 作者们可能使用了分类、关联规则学习和聚类等数据挖掘方法来识别客户群体的特征和行为模式。这些方法可以帮助企业更好地理解客户群体的需求,例如,找出哪些功能组合最受欢迎,或者哪些配置可能引发交叉销售或升级销售的机会。 另一方面,粗糙集理论的应用在于简化数据,减少冗余信息,并确定对决策至关重要的属性。这有助于企业制定更加精简且有效的配置策略,同时降低复杂性,提高客户满意度。结合数据挖掘的结果,企业可以针对不同的客户群体定制产品,提升市场竞争力。 这篇研究工作为企业提供了一种创新的分析工具,通过集成数据挖掘和粗糙集理论,深入理解客户群体的配置需求,优化产品设计和营销策略,以达到提高销售和客户忠诚度的目标。这种方法的应用不仅限于制造业,也适用于服务业和其他依赖于个性化服务的行业。

使用映射算法将 ER 架构映射到关系数据库架构。使用以下表示法表示生成的关系数据库架构:PK 表示主键,AK 表示备用键,FK 表示外键,并带有指向相应表(主键)的箭头 Book Entity (Strong) - Title (single valued, simple string) - ISBN (single valued, simple alphanumeric string), pk - Edition (single valued, simple numeric) - Date of Publication (single valued, composite concatenation of characters and numbers) - Price (single valued, simple floating point number) - Book Description (single valued, simple string) Author Entity (Strong) - Author Name - Author_id, pk Publisher Entity (Strong) - Publisher id (single value, simple numeric), pk - Publisher Name (single valued, simple string) - Address (single valued, simple string) - together the publisher name and address could make an alternate key because no to publishers can have the same name and address Customer Entity (strong) - Customer_id (single valued, simple string), pk - Name (composite one value for first, middle and last name, simple string) - Mailing Address (single valued, simple string) - Credit Card Number and Expiration Date (single value, simple numeric sequence), alternate key - Phone Number (single value, simple alphanumeric string) - Email Address (single valued, simple alphanumeric string) Shipment (strong) - Date of Shipment ( single valued, composite of strings and numbers) - Tracking Number (single valued, simple alphanumeric string), pk - Date of Expected Delivery ( single valued, compoite of strings and numbers) Order (Strong) - Order Number (single valued, simple number), pk - Mailing Address (single value, simple string) - Method of Shipment (single value, simple string) - Date and Time of Order (when the order was placed) - Total Price of the Order (multivalue, composite) Promotion (strong entity type ) - Promotion id number, pk - Percentage Discount Points (single value, simple float) - Duration of Promotion (start date and end date) ( composite attributes like the dates above) Line Item(weak entity type) - Total price for each book that is ordered (single value, two place precision float) - Quantity of each item ordered Category (strong entity) - Category ID (single value, simple numeric), pk - Category Name (single value, simple string),

2023-06-11 上传

WITH -- 定义一个子查询,获取销售额排名前10的产品 top_products AS ( SELECT product_id, SUM(sales) AS total_sales FROM orders WHERE order_date BETWEEN '2021-01-01' AND '2021-06-30' GROUP BY product_id ORDER BY total_sales DESC LIMIT 10 ), -- 定义一个子查询,获取销售额排名前10的客户 top_customers AS ( SELECT customer_id, SUM(sales) AS total_sales FROM orders WHERE order_date BETWEEN '2021-01-01' AND '2021-06-30' GROUP BY customer_id ORDER BY total_sales DESC LIMIT 10 ), -- 定义一个窗口函数,计算每个客户的销售额排名 customer_sales_rank AS ( SELECT customer_id, SUM(sales) AS total_sales, ROW_NUMBER() OVER (ORDER BY SUM(sales) DESC) AS sales_rank FROM orders WHERE order_date BETWEEN '2021-01-01' AND '2021-06-30' GROUP BY customer_id ) -- 最终查询,获取纽约市销售额排名前10的客户,以及他们购买的销售额排名前10的产品 SELECT customers.id AS customer_id, customers.name AS customer_name, products.id AS product_id, products.name AS product_name, SUM(orders.sales) AS total_sales FROM orders -- 连接顾客信息 INNER JOIN customers ON orders.customer_id = customers.id -- 连接产品信息 INNER JOIN products ON orders.product_id = products.id -- 仅查询纽约市的客户 WHERE customers.city = 'New York' -- 仅查询销售额排名前10的客户 AND customers.id IN (SELECT customer_id FROM top_customers) -- 仅查询销售额排名前10的产品 AND products.id IN (SELECT product_id FROM top_products) -- 仅查询客户销售额排名前10的订单 AND customers.id IN (SELECT customer_id FROM customer_sales_rank WHERE sales_rank <= 10) GROUP BY customers.id, customers.name, products.id, products.name ORDER BY customers.id, total_sales DESC, products.id;请优化下这条sql

140 浏览量