最优化方法与人群计数:基于全卷积神经网络
需积分: 25 29 浏览量
更新于2024-08-10
收藏 773KB PDF 举报
"这篇资料是关于最优化方法的课程介绍,着重讲解了最优化理论及其在人群计数领域的应用,采用全卷积神经网络作为技术手段。课程内容涵盖线性规划、一维搜索法、无约束和约束最优化方法,以及动态规划、多目标规划等。同时,提到了评价学生成绩的方法,即30%的平时成绩(包括考勤、作业和课堂表现)和70%的期末考试试卷成绩。"
最优化方法是数学的一个重要分支,其目标是在所有可能的解决方案中寻找最优解,以实现最大效益或最小成本。课程由和望利教授主讲,涵盖了最优化问题的基本概念和数学基础,如线性规划及其对偶问题,一维搜索法,无约束和约束最优化方法。此外,还介绍了动态规划、多目标规划,以及模拟退火算法、遗传算法、禁忌搜索算法等现代优化算法,用以解决更复杂的问题。
线性规划是优化问题的基础,它处理的是满足线性约束条件下,目标函数的最大化或最小化问题。一维搜索法则是在一维空间中寻找目标函数的极值点。无约束最优化方法主要针对没有明确限制条件的问题,而约束最优化方法则需在满足特定条件的前提下求解最优解。
动态规划通常用于处理具有时间序列依赖的决策问题,它通过分解问题为子问题来求解全局最优解。多目标优化则考虑多个相互冲突的目标,寻求一种平衡或妥协的解决方案。
课程要求学生不仅要认真听讲和复习,还要积极完成课后习题,通过阅读参考书籍深化理解。教材推荐了郭科、陈聆、魏友华的《最优化方法及其应用》,以及陈宝林的《最优化理论与算法》。考核方式为闭卷考试,成绩由30%的平时成绩(包括考勤、作业和课堂表现)和70%的期末考试试卷成绩组成。
在实际应用中,最优化方法广泛应用于工程、经济、管理等领域。例如,在人群计数场景下,可能需要利用全卷积神经网络(FCN)进行图像分析,通过优化网络参数来提高计数的准确性和效率,这体现了最优化方法在解决复杂问题中的强大能力。
170 浏览量
2021-08-18 上传
2021-08-18 上传
点击了解资源详情
2021-09-25 上传
201 浏览量
2021-08-18 上传
2021-08-18 上传
2021-08-18 上传
思索bike
- 粉丝: 38
- 资源: 3959
最新资源
- 2009年凌阳最新的芯片选型参考资料
- domino URL命令
- E3Guide e3:tree的开发指南
- Serv-U FTP的建立和维护手册(PDF)
- 基于S3C2440的嵌入式LINUX系统移植的研究与实现
- 基于ARM的嵌入式视频监控系统客户端设计实现
- LINUX操作系统实时性的分析与改进策略
- windows xp sp2不是提供远程桌面共享-远程计算机已结束连接
- SQL21自学通edit
- STM32硬件设计手册
- ubuntu_pocket_guide_and_reference.8109283240.pdf
- More Effective C++(中文版).pdf
- as3.0组件详细使用与开发教程
- 你必须知道的495个C语言问题
- Flex ActionScript 3.0 Cookbook 中文版
- 学习jsp自定义标签