Android编程入门:探索OpenPhone联盟与开发系统

需积分: 10 0 下载量 27 浏览量 更新于2024-07-28 收藏 8.03MB PDF 举报
"Android开发教材.pdf" 这是一本深入讲解Android编程基础的教材,适合初学者和进阶者学习。书中详细介绍了Android操作系统的核心概念以及如何进行应用开发。开放手机联盟(Open Handset Alliance,OHA)是理解Android生态系统的关键,它是Google发起的一个全球性联盟,旨在推动Android这一开源移动系统的开发和应用。该联盟由多家手机制造商、芯片供应商和移动运营商组成,如宏达电、英特尔、摩托罗拉、三星、高通等知名公司都是其创始成员。 在Android开发中,理解OHA的重要性在于它促进了Android平台的开放性和创新性,使得开发者能够自由地创建各种应用,不受传统封闭系统的限制。通过这个联盟,各成员可以共享技术资源,加速移动设备的创新和新功能的实现。 本书的部分内容可能涵盖了以下几个关键知识点: 1. **Android系统架构**:Android是一个分层的系统,包括Linux内核、硬件抽象层(HAL)、库、应用程序框架和应用程序。开发者需要理解这些层次如何协同工作,以便有效地编写应用程序。 2. **Android Studio集成开发环境(IDE)**:Android Studio是官方推荐的开发工具,提供了丰富的功能,如代码编辑、调试、性能分析等,是开发Android应用的基础。 3. **Android应用程序组件**:Activity、Service、BroadcastReceiver和ContentProvider是构成Android应用的基本组件,理解它们的功能和交互方式至关重要。 4. **布局设计与用户界面(UI)**:XML用于定义应用程序的界面布局,理解布局管理器如LinearLayout、RelativeLayout和ConstraintLayout,以及如何使用View和 ViewGroup是创建吸引人的用户界面的关键。 5. **Intent**:Intent是Android中连接不同组件的桥梁,通过Intent可以启动Activity或Service,实现应用间的通信。 6. **数据存储**:Android提供了多种数据存储方式,如SQLite数据库、SharedPreferences、文件存储和网络存储,开发者需要根据需求选择合适的方式。 7. **权限管理**:Android的权限模型要求开发者明确声明和处理应用所需的权限,确保用户隐私的安全。 8. **多媒体支持**:Android支持音频、视频和图像处理,开发者可以利用API来播放和处理多媒体内容。 9. **网络编程**:Android应用经常需要与服务器进行通信,HTTP/HTTPS请求、WebSocket、JSON解析等网络编程技能不可或缺。 10. **Android应用发布流程**:包括签名证书、APK打包、应用上传到Google Play Store或第三方市场,以及版本管理和更新策略。 通过学习这本教材,读者将全面了解Android开发的基本原理和实践技巧,具备开发高质量Android应用的能力。同时,也会对开放手机联盟有更深入的认识,理解Android生态系统的开放性及其在全球移动市场的影响力。
2018-01-06 上传
The world generates data at an increasing pace. Consumers, sensors, or scienti c experiments emit data points every day. In nance, business, administration and the natural or social sciences, working with data can make up a signi cant part of the job. Being able to ef ciently work with small or large datasets has become a valuable skill. Python started as a general purpose language. Around ten years ago, in 2006, the rst version of NumPy was released, which made Python a rst class language for numerical computing and laid the foundation for a prospering development, which led to what we today call the PyData ecosystem: A growing set of high- performance libraries to be used in the sciences, nance, business or anywhere else you want to work ef ciently with datasets. Python is not only about data analysis. The list of industrial-strength libraries for many general computing tasks is long, which makes working with data in Python even more compelling. Social media and the Internet of Things have resulted in an avalanche of data. The data is powerful but not in its raw form; it needs to be processed and modeled and Python is one of the most robust tools we have out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This course is your guide to get started with Predictive Analytics using Python as the tool. Data visualization is intended to provide information clearly and help the viewer understand them qualitatively. The well-known expression that a picture is worth a thousand words may be rephrased as “a picture tells a story as well as a large collection of words”. Visualization is, therefore, a very precious tool that helps the viewer understand a concept quickly. We are currently faced with a plethora of data containing many insights that hold the key to success in the modern day. It is important to nd the data, clean it, and use the right tool to visualize it. This course explains several different ways to visualize data using Python packages, along with very useful examples in many different areas such as numerical computing, nancial models, statistical and machine learning, and genetics and networks.