苏宁大数据平台的Spark应用与自动化分析
20 浏览量
更新于2024-08-27
收藏 2.32MB PDF 举报
苏宁大数据平台的架构着重于离线计算、流式计算和OLAP引擎,使用Spark和Hive处理离线数据,SparkStreaming处理准实时计算,Storm与Flink用于实时流计算,而Druid和ES则分别用于OLAP的实时计算和明细查询。在平台化服务化方面,CBT任务流调度平台负责多类型任务的管理和调度,SSMP专注SparkStreaming任务的24小时运行保障,还有在线机器学习平台基于SparkMLlib提供模型训练和部署。
详细知识点:
1. **Spark在大数据平台中的核心地位**:Spark作为一个强大的并行计算框架,在苏宁大数据平台中承担着离线数据分析和挖掘的关键角色,同时通过SparkSQL支持部分Hive的功能迁移。
2. **离线计算**:离线计算主要依赖Spark和Hive,Spark用于复杂的数据处理,Hive则提供数据仓库功能,每日处理大量数据,如文中提到的300TB。
3. **流式计算**:流式计算分为准实时和实时流,准实时计算基于SparkStreaming,可处理数秒至分钟级的业务需求;实时流则采用Storm和Flink,其中Flink因其窗口计算和EventTime处理能力逐渐受到重视。
4. **Storm与Libra**:苏宁拥有大规模的Storm集群,搭配自研的StormSQL引擎Libra,提供了SQL接口以方便实时流业务操作。
5. **Flink的引入**:苏宁开始强化Flink在架构中的作用,利用其在窗口计算和事件时间处理上的优势,以适应不断变化的业务需求。
6. **OLAP引擎**:OLAP服务由Druid和Elasticsearch(ES)共同提供,Druid用于实时指标聚合计算,ES用于快速数据索引和明细查询。
7. **平台工具**:
- CBT任务流调度平台:统一调度Spark、SparkSQL和数据交换等任务,确保大规模任务的高效执行。
- SSMP平台:专注于SparkStreaming任务的管理和调度,确保24小时稳定运行。
- 在线机器学习平台:基于SparkMLlib,支持在线Pipeline构建、模型训练和调优,可一键部署到SparkStreaming应用。
8. **Hive向SparkSQL迁移**:苏宁业务对Hive有较大依赖,但也在逐步将部分工作负载迁移到SparkSQL,以利用其性能优势和更现代的SQL语法。
9. **系统扩展性**:苏宁的大数据平台规模庞大,拥有700多个离线集群节点,每天调度大量任务,显示出系统的高度扩展性和稳定性。
10. **技术发展趋势**:随着业务发展,平台持续引入新工具和技术,如Flink和GPU支持的深度学习,以提升处理效率和满足新的业务需求。
2021-12-07 上传
2021-07-04 上传
2021-05-01 上传
2023-06-09 上传
2023-06-09 上传
2023-10-29 上传
2024-03-06 上传
2023-05-24 上传
2023-03-26 上传
weixin_38557838
- 粉丝: 2
- 资源: 898
最新资源
- IEEE 14总线系统Simulink模型开发指南与案例研究
- STLinkV2.J16.S4固件更新与应用指南
- Java并发处理的实用示例分析
- Linux下简化部署与日志查看的Shell脚本工具
- Maven增量编译技术详解及应用示例
- MyEclipse 2021.5.24a最新版本发布
- Indore探索前端代码库使用指南与开发环境搭建
- 电子技术基础数字部分PPT课件第六版康华光
- MySQL 8.0.25版本可视化安装包详细介绍
- 易语言实现主流搜索引擎快速集成
- 使用asyncio-sse包装器实现服务器事件推送简易指南
- Java高级开发工程师面试要点总结
- R语言项目ClearningData-Proj1的数据处理
- VFP成本费用计算系统源码及论文全面解析
- Qt5与C++打造书籍管理系统教程
- React 应用入门:开发、测试及生产部署教程