使用回溯法解决最小长度圆排列问题
5星 · 超过95%的资源 需积分: 35 200 浏览量
更新于2024-09-19
2
收藏 1.6MB PPT 举报
"本资源是关于使用回溯法解决圆排列问题的课件,主要讲解如何找到一组圆在矩形框内相切排列,使得排列的总长度最小。"
回溯法是一种有效的解决约束满足问题的算法,它通过试探性的构建解并逐步扩展,如果在某一步发现无法构造出合法解,则回退到上一步甚至更早的步骤,尝试其他的可能性。在这个圆排列问题中,目标是找到n个不同半径的圆在矩形底边相切的排列方式,使得排列的总长度最小。
问题描述给出了具体的数据输入格式:首先,输入一个正整数n,表示圆的数量(1 <= n <= 20),接着是n个数,代表每个圆的半径。课件中定义了几个关键变量和函数来处理这个问题:
1. `minn`:存储当前找到的最优解,即最小长度。
2. `x[N]`:存储第N个圆的圆心横坐标。
3. `r[N]`:存储第N个圆的半径。
4. `doublecenter(int t)`:计算第t个圆的圆心横坐标。此函数通过遍历已放置的圆,计算与第t个圆相切的圆心距离,然后选取最大值作为第t个圆的横坐标。
5. `void com()`:计算当前圆排列的长度。通过遍历所有圆,找到最左和最右的边界,然后更新最小长度`minn`。
6. `void dfs(int t)`:递归函数,用于探索所有可能的圆排列,并在过程中调用`doublecenter`和`com`函数,更新最优解。
在`dfs`函数中,递归地尝试将每个未放置的圆放在所有可能的位置,每次放置一个圆后,都计算排列的长度,如果长度小于当前的最小长度,就更新`minn`。若无法找到合适的位置,就回溯到上一步,尝试下一个圆的不同位置。
回溯法的核心在于其“试探-回溯”的过程,它能够有效地搜索所有可能的解空间,而不会陷入局部最优。在这个圆排列问题中,回溯法能够保证找到最佳的圆排列,使得矩形框的宽度(即排列的长度)最小。
这个课件深入浅出地介绍了如何利用回溯法解决实际问题,对于理解回溯算法的工作原理和应用有很好的指导价值。对于学习算法、尤其是优化问题的求解策略,这个案例提供了很好的实践示例。
2024-05-14 上传
2023-04-30 上传
2023-04-25 上传
2023-05-16 上传
2023-06-10 上传
2023-06-11 上传
aaa963163499
- 粉丝: 0
- 资源: 1
最新资源
- 火炬连体网络在MNIST的2D嵌入实现示例
- Angular插件增强Application Insights JavaScript SDK功能
- 实时三维重建:InfiniTAM的ros驱动应用
- Spring与Mybatis整合的配置与实践
- Vozy前端技术测试深入体验与模板参考
- React应用实现语音转文字功能介绍
- PHPMailer-6.6.4: PHP邮件收发类库的详细介绍
- Felineboard:为猫主人设计的交互式仪表板
- PGRFileManager:功能强大的开源Ajax文件管理器
- Pytest-Html定制测试报告与源代码封装教程
- Angular开发与部署指南:从创建到测试
- BASIC-BINARY-IPC系统:进程间通信的非阻塞接口
- LTK3D: Common Lisp中的基础3D图形实现
- Timer-Counter-Lister:官方源代码及更新发布
- Galaxia REST API:面向地球问题的解决方案
- Node.js模块:随机动物实例教程与源码解析