Experimental demonstration of polarization
encoding quantum key distribution system based
on intrinsically stable polarization-modulated
units
Jindong Wang,
1,*
Xiaojuan Qin,
2
Yinzhu Jiang,
1
Xiaojing Wang,
1
Liwei Chen,
2
Feng
Zhao,
3
Zhengjun Wei,
1
and Zhiming Zhang
1
1
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Guangdong Provincial
Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Outer Ring
Road, High Education City, Guangzhou, 510006, China
2
Guangdong Polytechnic Institute, Tong Xin Road, Guangzhou 510091, China
3
School of Physics and Telecommunication Engineering, Shanxi University of Technology, Chao Yang Road,
Hanzhong 723000, China
*
wangjd@scnu.edu.cn
Abstract: A proof-of-principle demonstration of a one-way polarization
encoding quantum key distribution (QKD) system is demonstrated. This
approach can automatically compensate for birefringence and phase drift.
This is achieved by constructing intrinsically stable polarization-modulated
units (PMUs) to perform the encoding and decoding, which can be used
with four-state protocol, six-state protocol, and the measurement-device-
independent (MDI) scheme. A polarization extinction ratio of about 30 dB
was maintained for several hours over a 50 km optical fiber without any
adjustments to our setup, which evidences its potential for use in practical
applications.
©2016 Optical Society of America
OCIS codes: (270.5568) Quantum cryptography; (060.4510) Optical communications;
(250.4110) Modulators; (230.5440) Polarization-selective devices.
References and links
1. C. H. Bennet and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of
Electrical and Electronics Engineers, Bangalore, India, 1984), pp. 175–179.
2. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–
3124 (1992).
3. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum
cryptography: a step towards global key distribution,” Nature 419(6906), 450 (2002).
4. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a
plug&play system,” New J. Phys. 4, 41 (2002).
5. Y. Liu, T.-Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, C. Z.
Peng, K. Chen, Z. B. Chen, and J. W. Pan, “Decoy-state quantum key distribution with polarized photons over
200 km,” Opt. Express 18(8), 8587–8594 (2010).
6. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A.
Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H.
Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y.
Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P.
Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A.
Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–
10409 (2011).
7. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T.
Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribiton with entangled states,” New J.
Phys. 11(8), 085002 (2009).
8. H. Takesue, T. Sasaki, K. Tamaki, and M. Koashi, “Experimental quantum key distribution without monitoring
signal disturbance,” Nat. Photonics 9(12), 827–831 (2015).
9. S. Wang, Z. Q. Yin, W. Chen, D. Y. He, X. T. Song, H. W. Li, L. J. Zhang, Z. Zhou, G. C. Guo, and Z. F. Han,
“Experimental demonstration of a quantum key distribution without signal disturbance monitoring,” Nat.
Photonics 9(12), 832–836 (2015).
Received 29 Feb 2016; revised 3 Apr 2016; accepted 4 Apr 2016; published 8 Apr 2016
18 Apr 2016 | Vol. 24, No. 8 | DOI:10.1364/OE.24.008302 | OPTICS EXPRESS 8302