Bidirectional multiband radio-over-fiber system
based on polarization multiplexing and
wavelength reuse
Ting Su,
1,2,*
Jianyu Zheng,
2
Zhongle Wu,
1
Min Zhang,
1
Xue Chen,
1
and Gee-Kung Chang
2
1
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and
Telecommunications, Beijing, 100876, China
2
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
suting@bupt.edu.cn
Abstract: A polarization multiplexing technique based on phase-shift-
induced polarization modulation-to-intensity modulation (PloM-to-IM)
convertor and a Mach-Zehnder modulator (MZM) is proposed to generate
multi-band signals. Successful transmission of the traditional radio
frequency, microwave (MW) and millimeter wave (MMW) signals is
simultaneously achieved. Meanwhile, the intensity-constant optical carrier
(OC) is reused for upstream 25-km transmission.
©2015 Optical Society of America
OCIS codes: (060.2330) Fiber optics communications; (060.5060) Phase modulation;
(060.2360) Fiber optics links and subsystems.
References and links
1. P. Xia, A. V. Garcia, and S. K. Yong, 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice
(Wiley, 2011).
2. R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,”
IEEE Microw. Mag. 11(7), 44–50 (2010).
3. L. Zhang, X. Hu, P. Cao, T. Wang, and Y. Su, “A bidirectional radio over fiber system with multiband-signal
generation using one single-drive MZM,” Opt. Express 19(6), 5196–5201 (2011).
4. M. Zhu, A. Yi, Y. T. Hsueh, C. Liu, J. Wang, S. C. Shin, J. Yu, and G. K. Chang, “Demonstration of 4-band
millimeter-wave radio-over-fiber system for multi-service wireless access networks,” in Proceedings of
OFC/NFOEC 2013, Anaheim, CA, United States, Paper OM3D.4.
5. L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband
signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,”
IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
6. J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, and S. Wang, “Implementation of wavelength reusing upstream
service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–
1169 (2013).
7. T. Shao and J. Yao, “Wavelength reuse in a bidirectional UWB over fiber system,” Opt. Express 21(10), 11921–
11927 (2013).
8. M. Morant, J. Prat, and R. Llorente, “Radio-over-fiber optical polarization-multiplexed networks for 3GPP
wireless carrier-aggregated MIMO provision,” J. Lightwave Technol. 32(20), 3721–3727 (2014).
9. J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed ultra-wideband noise
radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
10. T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service
wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett.
27(4), 403–406 (2015).
11. J. Zheng, H. Wang, W. Li, L. Wang, T. Su, J. Liu, and N. Zhu, “Photonic-assisted microwave frequency
multiplier based on nonlinear polarization rotation,” Opt. Lett. 39(6), 1366–1369 (2014).
12. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
13. J. Zhang, X. Yuan, M. Lin, J. Tao, Y. Zhang, M. Zhang, and X. Zhang, “Transmission of 112Gb/s PM-RZ-
DQPSK over 960 km with adaptive polarization tracking based on power difference”, in Proceedings of ECOC,
2010, Torino, Italy, Paper P2. 09.
14. B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “1-THz bandwidth of 70-krad/s endless optical polarization
control”, in proceedings of OFC/NFOEC, 2014, San Francisco, CA, United States, Paper Th2A.1.
15. M. Yagi, S. Satomi, and S. Ryu, “Field trial of 160-Gbit/s, polarization-division multiplexed RZ-DQPSK
transmission system using automatic polarization control”, in proceedings of OFC/NFOEC, 2008, San Diego,
CA, United States, Paper OThT7.
Received 4 Feb 2015; revised 27 Mar 2015; accepted 27 Mar 2015; published 8 Apr 2015
20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.009772 | OPTICS EXPRESS 9772