超双曲与双曲函数的单调性和绝对单调性及其应用

0 下载量 99 浏览量 更新于2024-08-27 收藏 1.27MB PDF 举报
该资源是一篇发表在"Journal of Inequalities and Applications"(2016年)的研究论文,作者是Zhen-Hang Yang和Yu-Ming Chu,主题涉及双参数双曲和三角函数的单调性和绝对单调性及其应用。 在本文中,作者深入探讨了双参数双曲函数(如双曲正弦、双曲余弦等)和双曲三角函数(如正切、余切等)的单调性与绝对单调性性质。这些性质对于理解和应用这些函数至关重要,因为它们在数学的多个领域,如微积分、复分析和特殊函数理论中都有广泛的应用。 首先,单调性(monotonicity)是指函数值随着自变量的变化而增加或减少的性质,可以分为严格单调递增和单调递减。对于双参数的函数,这意味着随着参数的变化,函数的单调性可能会有所不同。绝对单调性(absolute monotonicity)则更为严格,它要求函数及其所有导数都是非负的,这确保了函数在定义域内的全局行为。 论文中,作者利用这些性质证明了一些涉及伽马函数(gamma function)的完全单调性结果。伽马函数是一个重要的特殊函数,在统计学、物理学和工程学等领域有广泛应用。完全单调性意味着函数本身及其所有导数都是非负的,这通常与函数的积分性质密切相关。 此外,论文还涉及到误差函数(error function),这是一个在概率论和物理中常见的特殊函数,用来描述一个随机变量落在标准正态分布某一区间的概率。作者通过研究双曲和三角函数的单调性,给出了误差函数的一些边界估计,这对于理解误差函数的行为以及在实际问题中的应用具有重要意义。 论文的数学分类号包括33B10(双曲函数和三角函数的一般理论)、33B15(特殊函数的不等式)、33B20(双曲和三角函数的其他特殊问题)、26A48(函数的单调性和凸性)和26D07(函数的不等式)。关键词包括Stolarsky均值、双曲函数、三角函数、伽马函数、误差函数、完全单调性和绝对单调性。 总结来说,这篇研究论文对双参数双曲和三角函数的单调性进行了深入研究,并将这些理论应用于伽马函数和误差函数,为这两个领域的理论发展和实际应用提供了新的洞察和工具。

帮我地道的翻译:The differential variational inequalities ((DVIs), for short) are useful for the study of models involving both dynamics and constraints in the form of in￾equalities. They arise in many applications: electrical circuits with ideal diodes, Coulomb friction problems for contacting bodies, economical dynamics, dynamic traffic networks. Pang and Stewart [26], [27] established the existence, unique￾ness, and Lipschitz dependence of solutions subject to boundary conditions for (DVIs) in finite dimensional spaces. Han and Pang investigated a class of dif￾ferential quasi-variational inequalities in [11], and Li, Huang and O’Regan [18] studied a class of differential mixed variational inequalities in finite dimensional Well-Posedness of Differential Mixed Quasi-Variational-Inequalities 137 spaces. Gwinner [8] obtained an equivalence result between (DVIs) and projected dynamical systems. In [9] he also proved a stability property for (DVIs) by using the monotonicity method of Browder and Minty, and Mosco set convergence. Chen and Wang [4] studied dynamic Nash equilibrium problems which have the formulation of differential mixed quasi-variational inequalities. Elastoplastic contact problems can also be incorporated into (DMQVIs) formulation because general dynamic processes in the nonsmooth unilateral contact problems are governed by quasi-variational inequalities. A numerical study for nonsmooth contact problems with Tresca friction can be found in [10], Liu, Loi and Obukhovskii [19] studied the existence and global bifurcation for periodic solutions of a class of (DVIs) by using the topological degree theory for multivalued maps and the method of guiding functions. For more details about (DVIs) we refer to [3], [30], [12], [22]–[21].

2023-05-30 上传