第
32
卷第
16
期
振动与冲击
JOURNAL
OF
VIBRATION
AND
SHOCK
含磨损故障的齿轮传动系统非线性动力学特性
王晓笋巫世晶周旭辉
2
胡基才
I
(1.武汉大学动力与机械学院武汉
430072:2.
武汉第二船舶研究所,武汉
430064)
Vo
l.
32
No.16
2013
摘
要:为揭示磨损故障对于齿轮传动系统非线性动态特性的影响,利用
Archard
和
W
eber-
Banaschek
公式分别计
算了齿面动态累积磨损量和磨损齿轮对的时变啃合刚度。建立含有非线性齿侧间隙、内部误差激励和含磨损故障的时变
啃合刚度的三自由度齿轮传动系统平移-扭转捐合动力学方程。采用变步长
Gill
积分方法对动力学模型进行了数值仿
真分析,以系统的激励频率为分岔参数,计算系统的对应的分岔图;引人
GRAM-SCHMIDT
方法对系统的
Jacobi
矩阵进行
正交化处理,计算系统的李雅普诺夫指数谱,同时结合
Poincar
居映射图和功率谱验证了李雅普诺夫指数谱和分岔图计算
结果的正确性。通过研究发现了系统内部存在的丰富非线性现象,包括倍周期分岔途径、阵发性途径和多种拟周期通过
锁相进入混沌的现象;在系统经由拟周期进入混沌的过程中发现了交替出现的拟周期与锁相现象以及拟周期运动时功率
谱分量存在的
Farey
序列现象。研究结果表明含有磨损故障的齿轮传动系统具有非常复杂的动力学特性,而系统由周期
运动进入混沌运动的途径也是丰富多样的。
关键词:分岔
;71
昆沌;磨损故障;啃合刚度;齿轮传动系统
中图分类号
TH133.425
文献标识码
A
Nonlinear
dynamics
analysis
of
gear
transmission
system
with
wear
fault
WANG
Xiao-sun
1
, WU Shi-jing
1
, ZHOU Xu-hui
2
, HU
Ji-c
αil
(1.
School
of
Power
and
Mechanical
Engineering
,
Wuhan
University
,
Wuhan
430072
, China;
2.
Wuhan
2
0d
Shipbuilding
Institute ,
Wuhan
430064 , China)
Abstract:
The Achard and W
eber-
Banaschek formula were employed to calculate the dynamic surface wear
and
the
mesh stiffnesses
of
wom surface gear
pair
respectively. The three-degree-of-freedom translational-rotational coupled
nonlinear dynamic equations of gear transmission system
, including the wom teeth pair's time-varying mesh stiffness ,
piece-
wise backlash and
intemal
error excitation , were presented to do
in-depth
investigation of the surface wear's effect on gear
transmission's nonlinear vibration characteristics. The varying step GILL integration method was employed to perform
numerical simulation of the dynamic mode
l.
The
intemal
excitation frequency was selected as the parameter to calculate
the bifurcation diagram. The orthonormalization treatment of the system's Jacobie matrix was carried out by utilizing
GRAM -SCHMIDT method
in
order to obtain the Lyapunov exponents.
Th
e
Poincar
,吕
section
and
power spectrum were used
to
verify the results
of
bifurcation
and
Lyapunov exponents of the system
under
some special parameter settings. Under
the
influence
of
system's strong nonlinearities, a rich variety of bifurcation phenomena were illustrated. The classic periodic-
doubling routes
to
chaos , intermittent routes to chaos
and
abundant
different quasi-periodic routes were revealed by
bifurcation diagram
and
Lyapunov exponents. One
ordinarγperiodic-doubling
route and two particular quasi-periodic
routes were demonstrated in detail with the aid of
Poincar
邑
maps
plotted
in
the
phase plane. Altemant quasi-period and
phase-locking were observed
in
the system's quasi-route to chaos. In addition , it was observed that the frequencies of
quasi-periodic motion satisfy the familiar Farey sequence. All the results indicate that the dynamic characteristics of gear
transmission with wear fault are very complex
and
the system's routes to chaos are abundant and diverse.
Key
words:
bifurcation;
chaos;
wear fault; mesh stiffness; gear transmission system
齿轮传动系统是目前机械系统中使用最为广泛的
基金项目:国家自然科学基金资助项目
(51005170)
;武汉市学科带头人
计划
(201051730545
)
收稿日期:
2012-08-14
修改稿收到日期
:2012
-
09
-
26
第一作者王晓笋男,博士,副教授,
1979
年生
传动方式,其通过轮齿啃合实现载荷和运动的传递
[1]
。
而由于其内部存在的齿侧间隙、时变啃合刚度和内部
误差激励等非线性因素,使得齿轮传动系统的负载运
行的过程中呈现复杂的非线性动力学特征。
Kahraman
等
[2
-4]
考虑了齿侧间隙和轴承间隙等非线性因素,建
立单级齿轮传动系统单自由度、二自由度和三自由度