深度学习驱动的表情识别系统:Keras与TensorFlow实现
5星 · 超过95%的资源 需积分: 31 102 浏览量
更新于2024-09-08
17
收藏 64B TXT 举报
"该资源是一个基于深度学习的表情识别系统,适用于Windows 10操作系统,并在Anaconda 4.2.0环境下运行,该环境预装了Python 3.5、TensorFlow 1.2.1(CPU版本)以及Keras 2.1.3和OpenCV-Python 3.4.0。系统采用了卷积神经网络(CNN)进行模型构建,包含了完整的网络搭建代码。由于文件大小超过240MB,作者已将作品上传至个人网盘。该作品是中国大学生计算机设计大赛的参赛项目,用户需下载GUI1.EXE程序(确保电脑为64位系统)以查看作品运行效果。源代码位于素材源码文件夹内,下载链接可在提供的百度网盘链接中获取。"
本资源介绍了一个基于深度学习的情感识别系统,其核心技术在于利用卷积神经网络(CNN)进行图像分析和情感分类。CNN是一种在计算机视觉领域广泛应用的深度学习模型,擅长处理像素级别的图像数据。在这个系统中,CNN被用于解析面部表情,识别出喜怒哀乐等不同情绪。Keras是一个高级神经网络API,运行在TensorFlow之上,使得模型构建和训练更为便捷。TensorFlow是谷歌开发的开源库,支持大规模的机器学习模型。
系统运行环境为Windows 10,依赖于Anaconda,这是一个科学计算平台,包含了Python解释器和许多科学计算库,如Numpy、Pandas等。这里使用的Anaconda版本为4.2.0,内含Python 3.5,这为深度学习提供了必要的计算环境。OpenCV-Python是OpenCV的Python接口,用于图像处理和计算机视觉任务,可能在系统中用于预处理面部图像,如检测和对齐面部特征。
为了展示作品,作者提供了GUI1.EXE执行文件,用户只需在64位系统上运行即可体验。同时,源代码可供下载,这对于研究、学习和进一步改进该表情识别系统非常有价值。若要获取源代码和作品文件,需要通过提供的百度网盘链接下载。这为学习者提供了一个实践深度学习和情感识别的完整案例,有助于加深对相关技术的理解和应用。
2019-04-24 上传
2019-03-13 上传
2023-05-25 上传
2023-11-21 上传
2023-09-09 上传
2021-08-18 上传
2024-08-01 上传
2024-10-03 上传
学编程的猪
- 粉丝: 6
- 资源: 1
最新资源
- IEEE 14总线系统Simulink模型开发指南与案例研究
- STLinkV2.J16.S4固件更新与应用指南
- Java并发处理的实用示例分析
- Linux下简化部署与日志查看的Shell脚本工具
- Maven增量编译技术详解及应用示例
- MyEclipse 2021.5.24a最新版本发布
- Indore探索前端代码库使用指南与开发环境搭建
- 电子技术基础数字部分PPT课件第六版康华光
- MySQL 8.0.25版本可视化安装包详细介绍
- 易语言实现主流搜索引擎快速集成
- 使用asyncio-sse包装器实现服务器事件推送简易指南
- Java高级开发工程师面试要点总结
- R语言项目ClearningData-Proj1的数据处理
- VFP成本费用计算系统源码及论文全面解析
- Qt5与C++打造书籍管理系统教程
- React 应用入门:开发、测试及生产部署教程