ResNet网络在AVEC2014数据集上实现抑郁症诊断方法
版权申诉
5星 · 超过95%的资源 121 浏览量
更新于2024-10-14
3
收藏 7KB ZIP 举报
资源摘要信息: "本项目是一个结合了深度学习和大数据分析的实践应用,通过构建一个基于ResNet网络的模型来实现抑郁症的自动诊断。抑郁症作为全球性的公共健康问题,其早期和准确诊断对于患者的治疗和康复具有重要意义。利用AVEC2014数据集,该数据集包含视频和语音信息,可以用于分析患者的表情、语音等多模态信息,从而帮助诊断抑郁症。
项目使用了ResNet网络架构,这是一种深度残差学习框架,能够训练极深的网络,有效解决了深度神经网络训练中的退化问题。通过AVEC2014数据集的训练,模型能够学习到与抑郁症相关的面部表情和声音特征,并在测试阶段给出诊断结果。
在数据预处理方面,项目主要包括以下几个步骤:
1. 采样:从AVEC2013的每个视频中提取100帧图像,保留原始标签,这些标签用于指示视频中记录的被试是否患有抑郁症。
2. 人脸对齐与裁剪:利用MTCNN(Multi-task Cascaded Convolutional Networks)工具,进行人脸检测和关键点定位,以对齐和裁剪视频帧中的面部区域。MTCNN是一种深度学习算法,能够高效准确地完成面部区域的检测、定位和对齐任务。
项目的文件架构清晰,包含了模型构建、数据处理、训练、验证和测试等多个环节,每个环节都对应一个Python脚本文件。具体文件包括:
- preprocess.py:主要负责视频信息的预处理,提取帧并进行人脸检测和裁剪。
- model.py:定义了ResNet网络的结构。
- load_data.py:用于获取图片的存放路径和将标签与之对应。
- writer.py:负责创建Tensorboard记录器,用以记录训练过程中的损失等信息。
- dataset.py:继承自torch.utils.Dataset类,用于将数据转换为torch.utils.data.DataLoader所需的迭代器格式。
- train.py:执行模型训练的主要脚本。
- validate.py:用于验证模型性能。
- test.py:测试模型性能,并记录预测分数,保存在testInfo.csv文件中。
- main.py:模型训练的入口文件,调用上述脚本按顺序执行。
此外,项目还包括处理后的数据集,以及训练过程的日志文件,这些日志文件可使用Tensorboard进行可视化查看。项目使用说明则提供了详细的运行说明和步骤,包括如何下载AVEC2014数据集,如何安装Tensorboard库,以及如何运行各个脚本文件。
本项目不仅适用于计算机科学、人工智能等专业的学生和教师,还适用于对深度学习和大数据分析感兴趣的其他领域从业者。项目代码经过验证,稳定可靠,具有很好的拓展性和教学应用价值,鼓励用户基于此进行二次开发,并提供反馈。"
2023-05-26 上传
2024-11-25 上传
2024-01-16 上传
2024-06-03 上传
2024-07-01 上传
2024-05-16 上传
2024-02-15 上传
2024-05-09 上传
.whl
- 粉丝: 3906
- 资源: 4858
最新资源
- JavaScript实现的高效pomodoro时钟教程
- CMake 3.25.3版本发布:程序员必备构建工具
- 直流无刷电机控制技术项目源码集合
- Ak Kamal电子安全客户端加载器-CRX插件介绍
- 揭露流氓软件:月息背后的秘密
- 京东自动抢购茅台脚本指南:如何设置eid与fp参数
- 动态格式化Matlab轴刻度标签 - ticklabelformat实用教程
- DSTUHack2021后端接口与Go语言实现解析
- CMake 3.25.2版本Linux软件包发布
- Node.js网络数据抓取技术深入解析
- QRSorteios-crx扩展:优化税务文件扫描流程
- 掌握JavaScript中的算法技巧
- Rails+React打造MF员工租房解决方案
- Utsanjan:自学成才的UI/UX设计师与技术博客作者
- CMake 3.25.2版本发布,支持Windows x86_64架构
- AR_RENTAL平台:HTML技术在增强现实领域的应用