清华源教程:一站式安装Keras GPU及依赖
1星 需积分: 4 105 浏览量
更新于2024-09-08
1
收藏 550B TXT 举报
在本文中,我们将深入讲解如何在Windows系统上利用清华大学镜像源安装Keras框架,并特别关注GPU支持的版本。Keras是一个流行的高级神经网络API,它可以在TensorFlow、Theano和CNTK等后端运行,使得深度学习模型的开发变得简单高效。
首先,我们需要确保你的系统已经安装了Anaconda,因为我们将通过Anaconda的conda包管理器来安装Keras。清华大学提供了官方的Anaconda频道(<https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/>),这将提供更稳定且易于管理的软件包。
在开始安装前,我们需要更新conda的配置以添加新的渠道来源。通过命令行输入以下命令:
```shell
(keras-gpu)H:\\keras-yolo3>conda config --addchannels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
```
接着,设置显示频道URL以获取更多关于软件包的信息:
```shell
(keras-gpu)H:\\keras-yolo3>conda config --set show_channel_urls yes
```
然后,为了创建一个新的环境并安装Keras-GPU,我们需要指定Python版本3.6:
```shell
(keras-gpu)H:\\keras-yolo3>conda create -n keras-gpu python=3.6
```
激活新创建的环境:
```shell
(keras-gpu)H:\\keras-yolo3>activate keras-gpu
```
在这个环境中,我们安装Keras及其依赖,包括可能需要的GPU加速库如CuDNN。由于Keras通常会自动检测并使用CuDNN,如果已安装,无需额外配置。然而,如果你需要手动安装CuDNN,首先确保你已经安装了CUDA,然后下载cuDNN并将其添加到系统路径中。
安装Keras-GPU时,可以使用pip工具:
```shell
(keras-gpu)H:\\keras-yolo3>conda install keras-gpu
```
如果上述步骤中没有包含CuDNN安装,可能会提示需要安装。此时,你可以使用pip安装Pillow和Matplotlib这些常用的数据处理和可视化库:
```shell
(keras-gpu)H:\\keras-yolo3>pip install Pillow matplotlib
```
这样,你就成功地在清华大学源上配置并安装了Keras-GPU环境,为你的深度学习项目奠定了基础。在接下来的开发过程中,记得检查环境变量和依赖是否正确设置,以便充分利用GPU加速性能。同时,定期更新软件包以保持最新功能和安全补丁。
2018-06-25 上传
2020-05-10 上传
2022-09-28 上传
2024-03-27 上传
2021-09-29 上传
2021-05-29 上传
2019-08-11 上传
2022-06-27 上传
2019-01-23 上传
191578010
- 粉丝: 0
- 资源: 19
最新资源
- BottleJS快速入门:演示JavaScript依赖注入优势
- vConsole插件使用教程:输出与复制日志文件
- Node.js v12.7.0版本发布 - 适合高性能Web服务器与网络应用
- Android中实现图片的双指和双击缩放功能
- Anum Pinki英语至乌尔都语开源词典:23000词汇会话
- 三菱电机SLIMDIP智能功率模块在变频洗衣机的应用分析
- 用JavaScript实现的剪刀石头布游戏指南
- Node.js v12.22.1版发布 - 跨平台JavaScript环境新选择
- Infix修复发布:探索新的中缀处理方式
- 罕见疾病酶替代疗法药物非临床研究指导原则报告
- Node.js v10.20.0 版本发布,性能卓越的服务器端JavaScript
- hap-java-client:Java实现的HAP客户端库解析
- Shreyas Satish的GitHub博客自动化静态站点技术解析
- vtomole个人博客网站建设与维护经验分享
- MEAN.JS全栈解决方案:打造MongoDB、Express、AngularJS和Node.js应用
- 东南大学网络空间安全学院复试代码解析