因子图与GTSAM实战指南:机器人定位与映射

需积分: 27 8 下载量 132 浏览量 更新于2024-07-09 收藏 1.36MB PDF 举报
“Factor Graphs and GTSAM:一个实践介绍” 本文档由Frank Dellaert撰写,提供了对因子图(Factor Graphs)和GTSAM的实践介绍,主要关注机器人感知领域,特别是SLAM(Simultaneous Localization and Mapping,同时定位与建图)和SFM(Structure from Motion,运动恢复结构)问题。因子图是一种图形模型,特别适合处理复杂的估计问题。 **因子图(Factor Graphs)** 因子图是无环图(acyclic graph)的一种,它由两个部分组成:变量(Variables)和因子(Factors)。变量代表估计问题中的未知随机变量,而因子则包含关于这些变量的概率信息,这些信息通常来源于测量数据或先验知识。因子图的这种结构使得在解决非线性优化问题时,如SLAM和SFM,能够有效地表示和处理大量的约束。 **与贝叶斯网络(Bayes Networks)的对比** 与常见的贝叶斯网络相比,因子图更加灵活。贝叶斯网络是定向的,而因子图是二分图,这种结构使得因子图在表示条件概率分布时更加直观,尤其适用于表示传感器观测到的数据对变量的影响。 **GTSAM(Georgia Tech Smoothing and Mapping)工具箱** GTSAM是一个基于BSD许可的C++库,专门用于处理因子图。这个库由Frank Dellaert及其在乔治亚理工学院的学生和合作者开发。GTSAM提供了一种高效的方法来执行因子图上的优化,包括求解最大后验概率(MAP)估计,这对于SLAM和SFM等实时应用至关重要。GTSAM库包含了因子图的构建、优化以及不确定性分析等功能,支持稀疏矩阵操作,从而实现了高效率的计算。 **在机器人感知中的应用** 在机器人领域,因子图常被用来解决SLAM问题,即机器人在未知环境中移动并同时构建地图和定位自身位置。通过因子图,可以将来自各种传感器(如激光雷达、相机和惯性测量单元)的数据整合起来,形成一个统一的估计。同样,SFM问题也在因子图框架下得到解决,通过多个视角的图像序列恢复场景的三维结构。 **主要内容** 文档中会展示许多来自机器人学和计算机视觉的实际例子,演示如何使用因子图和GTSAM来解决这些问题。这可能包括如何构建因子图模型,如何添加和处理观测数据,以及如何利用GTSAM进行优化和后验推理。 这份技术报告提供了一个深入理解因子图和GTSAM的起点,对于那些希望在SLAM、SFM等领域进行研究或开发的读者来说,是一份宝贵的资源。通过学习和实践,读者将能够掌握如何利用这些工具解决实际的机器人感知挑战。
2020-04-27 上传
We review the use of factor graphs for the modeling and solving of large-scale inference problems in robotics. Factor graphs are a family of probabilistic graphical models, other examples of which are Bayesian networks and Markov random fields, well known from the statistical modeling and machine learning literature. They provide a powerful abstraction that gives insight into particular inference problems, making it easier to think about and design solutions, and write modular software to perform the actual inference. We illustrate their use in the simultaneous localization and mapping problem and other important problems associated with deploying robots in the real world. We introduce factor graphs as an economical representation within which to formulate the different inference problems, setting the stage for the subsequent sections on practical methods to solve them.We explain the nonlinear optimization techniques for solving arbitrary nonlinear factor graphs, which requires repeatedly solving large sparse linear systems. The sparse structure of the factor graph is the key to understanding this more general algorithm, and hence also understanding (and improving) sparse factorization methods. We provide insight into the graphs underlying robotics inference, and how their sparsity is affected by the implementation choices we make, crucial for achieving highly performant algorithms. As many inference problems in robotics are incremental, we also discuss the iSAM class of algorithms that can reuse previous computations, re-interpreting incremental matrix factorization methods as operations on graphical models, introducing the Bayes tree in the process. Because in most practical situations we will have to deal with 3D rotations and other nonlinear manifolds, we also introduce the more sophisticated machinery to perform optimization on nonlinear manifolds. Finally, we provide an overview of applications of factor graphs for robot perception, showing the broad impact factor graphs had in robot perception. (只有第一章内容,我也才发现)