深度学习基础:Ian Goodfellow原著英文版

5星 · 超过95%的资源 需积分: 10 2 下载量 80 浏览量 更新于2024-07-19 收藏 68.71MB PDF 举报
"Ian Goodfellow的书Deep Learning英文原版" 《Deep Learning》是由Ian Goodfellow、Yoshua Bengio和Aaron Courville合著的一本深度学习领域的经典著作。这本书详细介绍了深度学习的基础理论、技术和应用,是该领域的重要参考文献。 1. 深度学习简介 本书适合对机器学习和深度学习感兴趣的读者,无论你是初学者还是经验丰富的研究者,都可以从中受益。书中涵盖了深度学习的历史趋势,展示了这一领域的发展历程和重要里程碑。 2. 应用数学与机器学习基础 第一部分深入讨论了应用数学和机器学习的基本概念,这是理解深度学习的基石。包括: - 线性代数:讲解向量、矩阵和张量,以及它们的乘法、单位矩阵和逆矩阵。 - 线性相关性和张空间:解释线性依赖和线性无关的概念,以及它们在深度学习中的作用。 - 范数:讨论不同类型的范数,如L1、L2范数,它们在正则化中的应用。 - 特殊矩阵和向量:介绍对角矩阵、正交矩阵等,并探讨它们的特性。 - 特征分解:详述特征值和特征向量,及其在数据分析中的应用,如主成分分析(PCA)。 - 奇异值分解(SVD):解释SVD的作用,它是许多机器学习算法的基础。 - 伪逆矩阵:阐述其定义和用途,特别是在求解最小二乘问题时的作用。 - 追迹运算和行列式:讨论这些矩阵运算的性质及其在机器学习中的应用。 3. 概率与信息论 书中进一步探讨概率论和信息论,这对于理解模型的不确定性、训练过程和优化策略至关重要: - 为什么需要概率:阐述概率在理解和建模复杂系统中的价值。 - 随机变量:定义和分类随机变量,如离散和连续变量。 - 概率分布:介绍各种概率分布,如均匀分布、正态分布等。 - 边缘概率:解释如何从联合概率计算边缘概率。 - 条件概率:阐述条件概率的概念及其与贝叶斯定理的关系。 - 条件概率链规则:展示如何使用链规则来处理多变量的条件概率。 - 独立性:定义事件的独立性和条件独立性,以及它们在模型设计中的意义。 - 期望、方差和协方差:解释这些统计量如何描述随机变量的中心趋势和波动。 - 常见概率分布:如伯努利分布、多项式分布等,以及它们在实际问题中的应用。 这本书通过丰富的例子和实践应用,为读者提供了深入理解深度学习所需的知识,是深度学习研究者的必备读物。无论是对于理论探索,还是实操技巧的提升,都有极大的帮助。
2016-08-22 上传
'Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.' -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX, Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning., The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models., Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.