Electroabsorption-modulated widely tunable
DBR laser transmitter for WDM-PONs
Liangshun Han, Song Liang,* Huitao Wang, Lijun Qiao, Junjie Xu, Lingjuan Zhao,
Hongliang Zhu, Baojun Wang, and Wei Wang
Key Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, Chinese Academy of Sciences,
Beijing, 100083, China
* liangsong@semi.ac.cn
Abstract: We present an InP based distributed Bragg reflector (DBR) laser
transmitter which has a wide wavelength tuning range and a high chip
output power for wavelength division multiplexing passive optical network
(WDM-PON) applications. By butt-jointing InGaAsP with 1.45µm
emission wavelength as the material of the grating section, the laser
wavelength can be tuned for over 13nm by the DBR current. Accompanied
by varying the chip temperature, the tuning range can be further enlarged to
16 nm. With the help of the integrated semiconductor optical amplifier
(SOA), the largest chip output power is over 30mW. The electroabsorption
modulator (EAM) is integrated into the device by the selective-area growth
(SAG) technique. The 3dB small signal modulation bandwidth of the EAM
is over 13 GHz. The device has both a simple tuning scheme and a simple
fabrication procedure, making it suitable for low cost massive production
which is desirable for WDM-PON uses.
©2014 Optical Society of America
OCIS codes: (130.3120) Integrated optics devices; (140.3600) Lasers, tunable.
References and links
1. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on
wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
2. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-
division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt.
Netw. 4(11), 737 (2005).
3. G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of
WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw. 1(4), C35–C50
(2009).
4. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting
diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382
(2004).
5. S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM
PON by using Manchester coding,” J. Opt. Netw. 6(6), 624 (2007).
6. K. Joon-Young, Y. Sang-Hwa, M. Sang-Rok, K. Dong Churl, and L. Chang-Hee, “400Gb/s (40×10 Gb/s) ASE
injection seeded WDM-PON based on SOA-REAM,” in Optical Fiber Commun. Conf. paper OW4D (2013).
7. Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser
diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–
668 (2014).
8. F. Ponzini, F. Cavaliere, G. Berrettini, M. Presi, E. Ciaramella, N. Calabretta, and A. Bogoni, “Evolution
scenario toward WDM-PON,” J. Opt. Commun. Netw. 1(4), C25–C34 (2009).
9. D. Anthon, J. D. Berger, and A. Tselikov, “C+L band MEMS tunable external cavity semiconductor laser,” in
Optical Fiber Commun. Conf. paper WL2 (2004).
10. J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band
external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol.
Lett. 17(3), 681–683 (2005).
11. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams,
D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA:
design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
12. J. W. Raring, L. A. Johansson, E. J. Skogen, M. N. Sysak, H. N. Poulsen, S. P. DenBaars, and L. A. Coldren,
“40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol.
25(1), 239–248 (2007).
Received 9 Oct 2014; revised 21 Nov 2014; accepted 21 Nov 2014; published 26 Nov 2014
1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.030368 | OPTICS EXPRESS 30368