深度学习精要:Ian Goodfellow等三大专家解读

4星 · 超过85%的资源 需积分: 50 48 下载量 127 浏览量 更新于2024-07-20 收藏 68.71MB PDF 举报
"《Deep Learning》是2016年由Ian Goodfellow、Yoshua Bengio和Aaron Courville三位谷歌大脑团队科学家合著的深度学习权威著作,由MIT出版社出版,全书超过800页,以全彩色排版呈现,内容清晰易读。这本书全面总结了当时的深度学习领域最新进展,适合对深度学习感兴趣的学者和从业者阅读。" 本书分为多个部分,首先介绍了深度学习的基本概念和历史趋势,随后深入到应用数学和机器学习的基础知识。 在"Applied Math and Machine Learning Basics"部分,作者详细讲解了线性代数这一基础概念。在2.1章节,他们阐述了标量、向量、矩阵和张量的基本概念,这些都是理解深度学习模型中权重和参数的关键。接着,2.2章节介绍了矩阵与向量的乘法,这是神经网络中计算梯度和反向传播的核心操作。2.3章节讲解了身份矩阵和逆矩阵,它们在求解线性方程组时扮演重要角色。2.4章节讨论了线性相关性和张成空间,这对于理解特征选择和降维至关重要。 2.5章节涉及范数的概念,范数用于度量向量或矩阵的大小,常用于正则化防止过拟合。2.6章节提到了特殊类型的矩阵和向量,如对角矩阵、单位矩阵等,这些在构建简化模型时非常有用。2.7章节介绍了特征分解,这是分析数据和设计优化算法的基础。2.8章节探讨了奇异值分解(SVD),在图像处理和推荐系统中有广泛应用。2.9章节讨论了伪逆矩阵,对于解决非方阵问题十分关键。2.10章节解释了迹运算,它在统计学习理论中有所应用。2.11章节涉及行列式,而2.12章节通过主成分分析PCA的例子,实际展示了这些数学工具如何应用于数据压缩和预处理。 接下来,3.1章节探讨了为何我们需要概率论,因为它在不确定性建模和统计推断中起到核心作用。3.2章节介绍了随机变量,这是描述不确定事件的数学对象。3.3章节讲解了概率分布,包括离散和连续分布,是构建概率模型的基础。3.4章节讨论边缘概率,3.5章节则深入到条件概率,3.6章节介绍条件概率的链式规则。3.7章节讲述了独立性和条件独立性,它们是评估变量间关系的重要概念。3.8章节讨论了期望、方差和协方差,这些统计量用于衡量随机变量的中心趋势和变异程度。3.9章节列举了一些常见的概率分布,如高斯分布和伯努利分布,这些在机器学习中广泛使用。 这本书通过深入浅出的方式,系统地介绍了深度学习所需的基础数学和概率论知识,为读者提供了坚实的理论基础,以便进一步研究深度学习模型的构建和优化。无论是初学者还是专业人士,都能从中受益匪浅。
2017-02-23 上传
'Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.' -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX, Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning., The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models., Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.