Python Numpy详解:打造高效数值计算

需积分: 46 131 下载量 136 浏览量 更新于2024-07-18 2 收藏 1.38MB PDF 举报
"这是关于Python库numpy的详细教程,主要涵盖了ndarray对象和ufunc函数,以及numpy的安装、导入、版本查看、基本数据类型等基础知识。教程内容来源于七月在线david老师的视频讲义,旨在提升Python基础用户的能力,特别是对于数值计算和机器学习领域的应用。" 在Python中,标准的数据结构如列表(list)虽然灵活,但在处理大量的数值计算时,性能并不理想。为了解决这个问题,numpy库应运而生。numpy是Python的一个核心库,专门用于高效的数值计算和数组操作。它的核心是ndarray对象,这是一个可以保存单一数据类型的多维数组,支持快速的数学运算,且底层由C语言实现,提高了执行效率。 ndarray对象(n-dimensional array object)是numpy中的关键数据类型,它可以表示任意维度的数组,与机器学习框架如TensorFlow中的张量(tensor)类似。这种结构不仅节省内存,还能利用向量化运算大幅提升计算速度。ndarray的另一个重要特性是其元素都具有相同的类型,确保了数据一致性,有利于数值计算。 ufunc(universal function object)是numpy提供的另一重要概念,它是一类能对数组中的每个元素进行相同操作的函数,类似于数学中的标量函数。ufunc函数可以高效地对整个数组进行操作,而不需要循环。 安装numpy可以通过pip命令,如`pip install numpy`,或者选择安装包含numpy的Anaconda科学计算环境。导入numpy库通常使用`import numpy as np`,之后可以通过`np.version.version`来查看numpy的版本信息。 numpy提供了一系列内置的基本数据类型,包括不同大小的整型(int8到int64、uint8到uint64)和浮点型(float16到float128),以及复数类型。这些类型代码分别对应着不同的字节大小和精度,适合各种计算需求。 为了获取numpy的帮助,可以使用内置的`dir(np)`函数列出所有可用的方法和属性,或直接查阅numpy的官方文档。理解并熟练掌握numpy的基本数据类型和数组操作是深入学习数据分析和机器学习的基础,能够极大地提高代码的效率和可读性。
903 浏览量
说明:本文档所有内容来源于网络 https://www.numpy.org.cn/user/ 目录 1. NUMPY 介绍 1 1.1 什么是 NUMPY? 1 1.2 为什么 NUMPY 这么快? 3 1.3 还有谁在使用 NUMPY? 3 2. 快速入门教程 4 2.1 先决条件 4 2.2 基础知识 4 2.2.1一个例子 5 2.2.2 数组创建 6 2.2.3 打印数组 8 2.2.4 基本操作 10 2.2.5 通函数 13 2.2.6 索引、切片和迭代 14 2.3 形状操纵 18 2.3.1改变数组的形状 18 2.3.2 将不同数组堆叠在一起 20 2.3.3 将一个数组拆分成几个较小的数组 22 2.4 拷贝和视图 23 2.4.1 完全不复制 23 2.4.2 视图或浅拷贝 24 2.4.3 深拷贝 25 2.4.4 功能和方法概述 26 2.5 LESS 基础 26 广播(Broadcasting)规则 27 2.6 花式索引和索引技巧 27 2.6.1使用索引数组进行索引 27 2.6.2使用布尔数组进行索引 31 2.6.3 ix_()函数 34 2.6.4使用字符串建立索引 37 2.7线性代数 37 简单数组操作 37 2.8技巧和提示 38 2.8.1“自动”整形 39 2.8.2矢量堆叠 39 2.8.3直方图 40 2.9进一步阅读 41 3. NUMPY 基础知识 42 3.1 数据类型 42 3.1.1 数组类型之间的转换 42 3.1.2 数组标量 45 3.1.3 溢出错误 46 3.1.4 扩展精度 47 3.2 创建数组 47 3.2.1 简介 48 3.2.2 将Python array_like对象转换为Numpy数组 48 3.2.3 Numpy原生数组的创建 48 3.2.4 从磁盘读取数组 50 3.3 NUMPY与输入输出 51 3.3.1 定义输入 51 3.3.2 将行拆分为列 52 3.3.3 跳过直线并选择列 54 3.3.4 选择数据的类型 55 3.3.5 设置名称 56 3.3.6 调整转换 59 3.3.7 快捷方式函数 62 3.4 索引 62 3.4.1 赋值与引用 63 3.4.2 单个元素索引 63 3.4.3 其他索引选项 64 3.4.4 索引数组 65 3.4.5 索引多维数组 66 3.4.6 布尔或“掩码”索引数组 67 3.4.7 将索引数组与切片组合 69 3.4.8 结构索引工具 70 3.4.9 为索引数组赋值 71 3.4.10 在程序中处理可变数量的索引 72 3.5 广播 73 3.6 字节交换 78 3.6.1字节排序和ndarrays简介 78 3.6.2 更改字节顺序 80 3.7 结构化数组 82 3.7.1 介绍 82 3.7.2 结构化数据类型 83 3.7.3 索引和分配给结构化数组 88 3.7.4 记录数组 96 3.7.5 Recarray Helper 函数 98 3.8编写自定义数组容器 116 3.9子类化NDARRAY 124 3.9.1 介绍 124 3.9.2 视图投影 125 3.9.3 从模板创建 126 3.9.4 视图投影与从模板创建的关系 126 3.9.5 子类化的含义 126 3.9.6 简单示例 —— 向ndarray添加额外属性 132 3.9.7 稍微更现实的例子 —— 添加到现有数组的属性 134 3.9.8 __array_ufunc__ 对于ufuncs 135 3.9.9 __array_wrap__用于ufuncs和其他函数 139 3.9.10 额外的坑 —— 自定义的 __del__ 方法和 ndarray.base 142 3.9.11 子类和下游兼容性 143 4. 其他杂项 144 4.1 IEEE 754 浮点特殊值 144 4.2 NUMPY 如何处理数字异常的 146 4.3 示例 146 4.4 连接到 C 的方式 147 4.4.1 不借助任何工具, 手动打包你的C语言代码。 147 4.4.2 Cython 148 4.4.3 ctypes 148 4.4.4 SWIG(自动包装发生器) 149 4.4.5 scipy.weave 149 4.4.6 Psyco 149 5. 与MATLAB比较 149 5.1 介绍 150 5.2 一些关键的差异 150 5.3 'ARRAY'或'MATRIX'?我应该使用哪个? 151 5.3.1 简答 151 5.3.2 长答案 151 5.4 MATLAB 和 NUMPY粗略的功能对应表 153 5.4.1 一般功能的对应表 153 5.4.2 线性代数功能对应表 154 5.5 备注 161 5.6 自定义您的环境 163 5.7 链接 164 6. 从源代码构建 164 6.1 先决条件 164 6.2 基本安装 164 6.3 测试 165 并行构建 165 6.4 FORTRAN ABI不匹配 165 6.4.1 选择fortran编译器 166 6.4.2 如何检查BLAS / LAPACK /地图集ABI 166 6.5 加速BLAS / LAPACK库 166 6.5.1 BLAS 166 6.5.2 LAPACK 167 6.5.3 禁用ATLAS和其他加速库 167 6.6 提供额外的编译器标志 168 6.7 使用ATLAS支持构建 168 7. 使用NUMPY的C-API 168 7.1 如何扩展NUMPY 168 7.1.1 编写扩展模板 169 7.1.2 必需的子程序 169 7.1.3 定义函数 171 7.1.4 处理数组对象 175 7.1.5 示例 180 7.2 使用PYTHON作为胶水 182 7.2.1 从Python调用其他编译库 183 7.2.2 手工生成的包装器 183 7.2.3 f2py 184 7.2.4 用Cython 191 7.2.5 ctypes 196 7.2.6 您可能会觉得有用的其他工具 206 7.3 编写自己的UFUNC 208 7.3.1 创建一个新的ufunc 208 7.3.2 示例非ufunc扩展名 209 7.3.3 一种dtype的NumPy ufunc示例 215 7.3.4 示例具有多个dtypes的NumPy ufunc 221 7.3.5 示例具有多个参数/返回值的NumPy ufunc 230 7.3.6 示例带有结构化数组dtype参数的NumPy ufunc 235 7.4 深入的知识 241 7.4.1 迭代数组中的元素 242 7.4.2 用户定义的数据类型 246 7.4.3 在C中对ndarray进行子类型化 249