TensorFlowOnSpark:分布式深度学习与Spark的结合
版权申诉

"TensorFlowOnSpark是一个由Yahoo开源的软件包,它将TensorFlow与Apache Spark集成,使得在Hadoop和Spark集群上实现可扩展的深度学习成为可能。该框架允许利用TensorFlow的深度学习功能和GPU加速计算,并解决了跨集群的数据传输问题。TensorFlowOnSpark的主要特点是能够轻松迁移现有的TensorFlow程序,同时支持同步/异步训练、模型/数据并行、inferencing以及TensorBoard。此外,它还允许Spark分发或由TensorFlow拉取HDFS和其他资源上的数据,便于整合现有的数据处理流程和机器学习算法。
在架构上,TensorFlowOnSpark的核心API包括TFCluster.run,用于初始化TensorFlow集群,分配Worker节点和Parameter Server(PS)节点,构建TensorFlowCluster,并为每个TensorFlow进程分配GPU。TFCluster.train和TFCluster.inference是两个关键操作,前者用于在Spark输入模式下启动训练模型,后者用于定义模型推理的RDD并返回结果。
在使用TensorFlowOnSpark时,用户需要根据不同的输入模式选择合适的API。例如,InputMode.SPARK意味着数据将通过Spark RDD进入,而InputMode.TENSORFLOW则表示数据已经存在于TensorFlow环境中。用户需要在main方法中实现Spark输入模式下的数据处理逻辑,包括对RDD的处理和训练过程。
一个典型的Demo示例通常包括以下几个步骤:
1. 启动集群:创建并初始化TFCluster。
2. 喂入训练数据:使用Spark的RDD来提供训练数据。
3. 训练模型:调用TFCluster.train开始模型训练。
4. 关闭集群:训练完成后,使用TFCluster.shutdown关闭集群。
TensorFlowOnSpark的这种设计使得用户能够在大规模分布式环境下无缝地进行深度学习任务,同时保持与单机TensorFlow的兼容性,极大地提升了深度学习在大数据环境中的应用潜力。"
211 浏览量
204 浏览量
293 浏览量
293 浏览量
176 浏览量
2021-03-27 上传
2021-04-21 上传
204 浏览量
211 浏览量

herosunly
- 粉丝: 7w+
最新资源
- 多功能截图识别与证件翻译工具V3.5发布
- Android竖直方向SeekBar实现示例
- Trapcode全套汉化插件中文安装教程
- 医院仓库管理系统:数据库增删改查解决方案
- Vue分页组件实现快速跳转功能
- 2018数学建模美赛深度解析与优秀论文分享
- React应用开发与部署指南
- MatterJS锅炉板项目开发与应用
- MATLAB循环平稳时间序列预测分析方法
- 海盗船H115i水冷散热器官方驱动程序下载
- stm32f103zet6应用于NBIOT传感器开发示例
- 松下伺服电机选型计算实例教程
- 二代证开发包CP IDMR02:多语言示例与安装指南
- 使用JavaScript创建互动测验应用教程
- unRAID社区模板库:简化应用程序部署
- 实现汽车租赁管理的简易系统解决方案