AR技术演进:从2D到3D的关键突破

需积分: 22 13 下载量 99 浏览量 更新于2024-07-19 1 收藏 2.23MB PDF 举报
"本次演讲主要探讨了AR技术的发展,从2D到3D的转变,以及其中的关键技术,包括AR的定义、工作原理、当前应用情况,特别是3D环境下的核心技术,如非平面物体识别、SLAM算法等。演讲者为侯晓辉,来自亮风台公司,内容涉及游戏、旅游、教育等多个领域的AR应用实例,并对未来AR技术的拓展应用进行了展望。" AR技术是一种将虚拟信息与现实世界相结合的技术,通过摄像头捕获的真实世界图像,经过处理后将虚拟信息叠加到现实场景中,从而实现增强现实的效果。AR原理涉及到多模态信息处理,包括视频输入、环境理解和3D交互理解,以及渲染和合成视频的步骤,确保虚拟与现实的无缝融合。 当前,AR技术已经取得了显著进展,例如《Pokémon GO》的成功展示了AR在游戏领域的潜力,其结合了LBS、IMU和摄像头数据实现3D场景定位。此外,手机QQ的AR奥运火炬传递活动也吸引了大量用户,展示了2D跟踪识别的高精度。然而,AR技术正在从2D向3D发展,这意味着它需要克服非平面物体识别和跟踪的挑战。 3D环境实时感知是AR技术的一大突破,这涉及到非平面物体和表面的识别与跟踪。为了实现这一目标,SLAM(即时定位与建图)技术成为了关键。SLAM允许设备在未知环境中构建地图并同时定位自身,这对于AR应用至关重要。在AR中,视觉SLAM(vSLAM)尤为重要,因为它利用摄像头数据进行定位和三维重建。 SLAM技术有多种类型,如粒子滤波、卡尔曼滤波等,而在计算机视觉领域,顺序结构从运动(SfM)和束调整(Bundle Adjustment)也是常用方法。视觉SLAM在资源有限的移动设备上实时运行,处理非刚性形变,以实现更丰富的AR体验。 随着技术的进步,AR的应用领域不断拓展,从旅游、展览到教育和娱乐,都有其身影。未来,AR技术有望在更多领域发挥作用,提供更加沉浸式和交互性的体验。为了降低能耗和提高效率,研究者们将继续优化算法,处理非平面物体识别、3D场景理解和实时跟踪等复杂问题,推动AR技术向着更真实、更全面的方向发展。
2015-05-01 上传
李群的一本书,是扫描版,书的质量不错。 This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts)and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.   Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997)and Algebraic Geometry (World Scientific 1998).