没有合适的资源?快使用搜索试试~ 我知道了~
首页IBM ILOG CPLEX Optimizer 12.5 教程:ILGO AMPL 使用详解
"IBM ILGO AMPL 使用手册"
IBM ILOG CPLEX Optimizer 12.5 是一个强大的数学优化求解器,专门用于处理线性编程(LP)、混合整数编程(MIP)和二次规划(QP)问题。这款工具在IT行业中广泛应用于决策优化,帮助企业解决复杂的问题,如供应链管理、财务规划、生产调度等。
ILGO (ILOG) 是IBM旗下的一个产品系列,主要提供优化和建模解决方案。AMPL是其中的一个组件,它是一种高级的数学建模语言,用户可以使用AMPL来描述和构建各种复杂的优化模型。通过结合AMPL与CPLEX Optimizer,用户能够方便地将业务问题转化为数学模型,并利用CPLEX的高效算法找到最优解。
在"IBMILOGCPLEXV12.1User'sManualforCPLEX"中,用户可以获得关于如何使用CPLEX Optimizer的详细指南。该手册涵盖了CPLEX的功能、用法、参数设置以及性能调优等方面的内容。它不仅指导用户如何编写和求解优化模型,还介绍了如何分析结果,以及如何利用CPLEX提供的接口和其他工具进行进一步的分析和报告。
手册中的“Legal notices”部分强调了IBM的产品版权信息,指出美国政府用户在使用、复制或披露该软件时受到GSA ADP Schedule Contract with IBM Corp.的限制。同时,手册列出了IBM及其他公司的商标信息,包括IBM、WebSphere、ILOG、CPLEX等,这些都是国际知名的品牌。
此外,手册可能还包括对第三方软件如Adobe PostScript和Linux的相关引用,这些技术可能被集成到CPLEX的文档或者操作环境中。例如,Adobe PostScript是一种页面描述语言,常用于打印和排版;而Linux是操作系统的基础,可能作为CPLEX运行的平台。
IBM ILOG CPLEX Optimizer 12.5与AMPL的组合提供了一个强大且全面的优化工具包,适合需要解决各种数学优化问题的专业人士。用户手册则是掌握这一工具的关键,它能帮助用户充分利用这些功能,实现业务效率的最大化。

Filtering the solution pool...........................................................................................................................617
What are filters of the solution pool?...............................................................................................618
Diversity filters.................................................................................................................................619
Range filters....................................................................................................................................620
Filter files.........................................................................................................................................621
Example: controlling properties of solutions with filters...................................................................622
Incumbent callback as a filter..........................................................................................................623
Using special ordered sets (SOS)..........................................................................................625
What is a special ordered set (SOS)?........................................................................................................626
Example: SOS Type 1 for sizing a warehouse............................................................................................627
Declaring SOS members............................................................................................................................628
Example: using SOS and priority................................................................................................................629
ilomipex3.cpp..................................................................................................................................630
mipex3.c..........................................................................................................................................631
Using semi-continuous variables: a rates example.............................................................633
What are semi-continuous variables?........................................................................................................634
Describing the problem..............................................................................................................................635
Representing the problem..........................................................................................................................636
Building a model.........................................................................................................................................637
Solving the problem....................................................................................................................................638
Ending the application................................................................................................................................639
Complete program......................................................................................................................................640
Using piecewise linear functions in optimization: a transport example............................641
What is a piecewise linear function?..........................................................................................................643
Syntax of piecewise linear functions...........................................................................................................644
Discontinuous piecewise linear functions...................................................................................................646
Isolated points in piecewise linear functions...............................................................................................649
Using IloPiecewiseLinear in expressions...................................................................................................650
Describing the problem..............................................................................................................................651
Problem statement..........................................................................................................................652
Variable shipping costs...................................................................................................................653
Model with varying costs.................................................................................................................655
Developing a model....................................................................................................................................657
Creating the environment and model..............................................................................................658
Representing the data.....................................................................................................................659
Adding constraints...........................................................................................................................660
Checking convexity and concavity...................................................................................................661
Adding an objective.........................................................................................................................662
Solving the problem....................................................................................................................................663
Displaying a solution...................................................................................................................................664
Ending the application................................................................................................................................665
Complete program: transport.cpp...............................................................................................................666
USER'S MANUAL FOR CPLEX
16

Logical constraints in optimization.......................................................................................667
What are logical constraints?.....................................................................................................................668
What can be extracted from a model with logical constraints?...................................................................669
Overview.........................................................................................................................................670
Logical constraints in the C++ API..................................................................................................671
Logical constraints in the Java API.................................................................................................672
Logical constraints in the .NET API.................................................................................................673
Which nonlinear expressions can be extracted?........................................................................................674
Logical constraints for counting..................................................................................................................675
Logical constraints as binary variables.......................................................................................................676
How are logical constraints extracted?.......................................................................................................677
Indicator constraints in optimization....................................................................................679
What is an indicator constraint?.................................................................................................................680
Example: fixnet.c........................................................................................................................................681
Indicator constraints in the Interactive Optimizer........................................................................................682
What are indicator variables?.....................................................................................................................683
Restrictions on indicator constraints...........................................................................................................684
Best practices with indicator constraints.....................................................................................................685
Using logical constraints: Food Manufacture 2...................................................................687
Introducing the example.............................................................................................................................688
Describing the problem..............................................................................................................................689
Representing the data................................................................................................................................690
Developing the model.................................................................................................................................693
Formulating logical constraints...................................................................................................................694
Solving the problem....................................................................................................................................695
Early tardy scheduling............................................................................................................697
Describing the problem..............................................................................................................................699
Understanding the data file........................................................................................................................700
Reading the data........................................................................................................................................701
Creating variables.......................................................................................................................................702
Stating precedence constraints..................................................................................................................703
Stating resource constraints.......................................................................................................................704
Representing the piecewise linear cost function........................................................................................705
Transforming the problem...........................................................................................................................706
Solving the problem....................................................................................................................................707
Using column generation: a cutting stock example.............................................................709
What is column generation?.......................................................................................................................711
Column-wise models in Concert Technology..............................................................................................712
Describing the problem..............................................................................................................................713
Representing the data................................................................................................................................715
Developing the model: building and modifying...........................................................................................717
The master model and column generator in this application...........................................................718
USER'S MANUAL FOR CPLEX
17

Adding extractable objects: both ways............................................................................................719
Adding columns to a model.............................................................................................................720
Changing the type of a variable......................................................................................................721
Cut optimization model....................................................................................................................722
Pattern generator model.................................................................................................................723
Changing the objective function.................................................................................................................724
Solving the problem: using more than one algorithm.................................................................................725
Ending the program....................................................................................................................................727
Complete program......................................................................................................................................728
Infeasibility and unboundedness..........................................................................729
Preprocessing and feasibility.................................................................................................731
Issues of infeasibility and unboundedness.................................................................................................732
Early reports of infeasibility based on preprocessing reductions...............................................................733
Managing unboundedness.....................................................................................................735
What is unboundedness?...........................................................................................................................736
Avoiding unboundedness in a model..........................................................................................................737
Diagnosing unboundedness.......................................................................................................................738
Diagnosing infeasibility by refining conflicts.......................................................................739
What is a conflict?......................................................................................................................................741
What a conflict is not..................................................................................................................................742
How to invoke the conflict refiner................................................................................................................743
How a conflict differs from an IIS................................................................................................................744
Meet the conflict refiner in the Interactive Optimizer..................................................................................745
Limits of the conflict refiner in the Interactive Optimizer..................................................................746
A model for the conflict refiner........................................................................................................747
Optimizing the example...................................................................................................................748
Interpreting the results and detecting conflict.................................................................................749
Displaying a conflict in the Interactive Optimizer.............................................................................750
Interpreting conflict.....................................................................................................................................751
Understanding the conflict in the model..........................................................................................752
Deleting a constraint.......................................................................................................................753
Understanding a conflict report.......................................................................................................755
Summing equality constraints.........................................................................................................756
Changing a bound...........................................................................................................................757
Adding a constraint.........................................................................................................................758
Changing bounds on cost...............................................................................................................759
Relaxing a constraint.......................................................................................................................760
More about the conflict refiner....................................................................................................................761
Refining a conflict in a MIP start.................................................................................................................763
Using the conflict refiner in an application..................................................................................................765
Example: modifying ilomipex2.cpp..................................................................................................766
What belongs in an application to refine conflict.............................................................................768
USER'S MANUAL FOR CPLEX
18

Comparing a conflict application to Interactive Optimizer...........................................................................769
Preferences in the conflict refiner....................................................................................................770
Groups in the conflict refiner...........................................................................................................771
Repairing infeasibilities with FeasOpt...................................................................................773
What is FeasOpt?.......................................................................................................................................774
Invoking FeasOpt........................................................................................................................................775
Specifying preferences...............................................................................................................................776
Example: FeasOpt in Concert Technology.................................................................................................777
Advanced programming techniques....................................................................783
User-cut and lazy-constraint pools........................................................................................785
What are user cuts and lazy constraints?...................................................................................................786
What are pools of user cuts or lazy constraints?........................................................................................787
Differences between user cuts and lazy constraints..................................................................................788
Limitations on pools in the C API...............................................................................................................789
Adding user cuts and lazy constraints........................................................................................................791
Using the Component Libraries.......................................................................................................792
Using the Interactive Optimizer.......................................................................................................793
Reading and writing LP files...........................................................................................................794
Reading and writing SAV files.........................................................................................................796
Reading and writing MPS files........................................................................................................797
Deleting user cuts and lazy constraints......................................................................................................799
Using goals..............................................................................................................................801
Branch & cut with goals..............................................................................................................................803
What is a goal?...............................................................................................................................804
Overview of goals in the search......................................................................................................805
How goals are implemented in branch & cut...................................................................................806
About the method execute in a goal................................................................................................807
Special goals in branch & cut.....................................................................................................................809
Or goal............................................................................................................................................810
And goal..........................................................................................................................................811
Fail goal...........................................................................................................................................812
Local cut goal..................................................................................................................................813
Null goal..........................................................................................................................................814
Branch as CPLEX goal...................................................................................................................815
Solution goal...................................................................................................................................816
Aggregating goals......................................................................................................................................817
Example: goals in branch & cut..................................................................................................................818
The goal stack............................................................................................................................................820
Memory management and goals................................................................................................................822
Cuts and goals...........................................................................................................................................823
Injecting heuristic solutions........................................................................................................................825
Controlling goal-defined search..................................................................................................................826
USER'S MANUAL FOR CPLEX
19

Example: using node evaluators in a node selection strategy....................................................................829
Search limits...............................................................................................................................................831
Using optimization callbacks.................................................................................................833
What are callbacks?...................................................................................................................................835
Informational callbacks...............................................................................................................................837
What is an informational callback?..................................................................................................838
Reference documents about informational callbacks......................................................................839
Where to find examples of informational callbacks.........................................................................840
What informational callbacks can return.........................................................................................841
Query or diagnostic callbacks....................................................................................................................843
What are query or diagnostic callbacks?........................................................................................844
Where query callbacks are called...................................................................................................845
Query callbacks and dynamic search.............................................................................................847
Query callbacks and deterministic parallel search..........................................................................848
Control callbacks........................................................................................................................................849
What are control callbacks?............................................................................................................850
What control callbacks do...............................................................................................................851
Control callbacks and dynamic search............................................................................................853
Control callbacks and deterministic parallel search........................................................................854
Implementing callbacks with Concert Technology......................................................................................855
How callback classes are organized...............................................................................................856
Writing callback classes by hand....................................................................................................857
Writing callbacks with macros in C++.............................................................................................858
Callback interface............................................................................................................................861
The continuous callback..................................................................................................................862
Example: deriving the simplex callback ilolpex4.cpp..................................................................................863
Implementing callbacks in the Callable Library..........................................................................................865
Callable Library callback facilities....................................................................................................866
Setting callbacks.............................................................................................................................867
Callbacks for continuous and discrete problems.............................................................................868
Example: using callbacks lpex4.c...............................................................................................................869
Example: controlling cuts iloadmipex5.cpp.................................................................................................870
Interaction between callbacks and parallel optimizers................................................................................875
Return values for callbacks........................................................................................................................876
Terminating without callbacks.....................................................................................................................877
Goals and callbacks: a comparison......................................................................................879
Overview.....................................................................................................................................................880
Advanced presolve routines..................................................................................................883
Introduction to presolve..............................................................................................................................884
A proposed example...................................................................................................................................886
Restricting presolve reductions..................................................................................................................887
When to alert presolve to modifications..........................................................................................888
Adding constraints to the first solution............................................................................................889
USER'S MANUAL FOR CPLEX
20
剩余951页未读,继续阅读
340 浏览量
125 浏览量
108 浏览量
2658 浏览量
837 浏览量
125 浏览量
149 浏览量
250 浏览量

keji07
- 粉丝: 0
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

最新资源
- 深入解析Linux内核注释:定制与功能扩展指南
- XFire服务开发实战指南
- UML基础教程:统一建模语言的关键概念解析
- CMM1.1:软件开发能力提升与成熟度模型解析
- Java设计模式:提升复用与灵活性的编程艺术
- Java语言中的数据结构和算法实现
- C#编程挑战:从基础到高级的实战题目
- Java Servlet 2.4 规范详解
- 网上书店管理系统分析与实现
- Div+CSS布局全攻略:从入门到高级实战
- 编程初学者指南:C/C++/Java/VB书籍推荐
- 提升效率的关键:进销存管理系统需求深度解析
- Java编程思想:对象与多态
- Oracle数据库详解:从入门到精通
- SQLPLUS全面指南:命令行操作与实战技巧
- USACO全攻略:从入门到精通
安全验证
文档复制为VIP权益,开通VIP直接复制
