Diffraction of volume Bragg gratings under high
flux laser irradiation
Xiang Zhang,
1,2,3
Jiansheng Feng,
1,3
Baoxing Xiong,
1,2,3
Kuaisheng Zou,
1,2,3
Xiao Yuan
1,2,3,*
1
Institute of Modern Optical Technologies, Soochow University, Suzhou, Jiangsu, 215006 China
2
Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University, Suzhou,
Jiangsu, 215006 China
3
Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, Jiangsu,
215006 China
*
xyuan@suda.edu.cn
Abstract: Diffraction property of transmitting volume Bragg gratings
(VBGs) recorded in photo-thermo-refractive glass (PTR) is studied under
the irradiation of a continuous-wave fiber laser with flux of 1274 W/cm
2
.
Dependence of temperature characteristics of VBGs prepared by different
crystallization temperatures is presented. When temperature of VBGs rises
up to 33°C, there are a 2.7% reduction and 1.59% ripple of diffraction
efficiency for VBGs. The period variation caused by the thermal expansion
of VBGs is used to explain the reduction of diffraction efficiency, and
experimental results are in agreement with theoretical analysis.
©2014 Optical Society of America
OCIS codes: (140.3330) Laser damage; (090.7330) Volume gratings; (060.3510) Lasers, fiber
References and links
1. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg
gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
2. X. Zhang, X. Yuan, S. Wu, J. S. Feng, K. Zou, and G. Zhang, “Two-dimensional angular filtering by volume
Bragg gratings in photothermorefractive glass,” Opt. Lett. 36(11), 2167–2169 (2011).
3. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and
spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt.
Lett. 29(16), 1891–1893 (2004).
4. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a
bulk glass Bragg grating,” Opt. Lett. 31(11), 1663–1665 (2006).
5. T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral
narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231
(2006).
6. P. Jelger and F. Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express
15(18), 11336–11340 (2007).
7. O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-
refractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999).
8. A. Jain, D. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. Glebov, “Coherent and spectral beam
combining of fiber lasers using volume Bragg gratings,” in Proceedings of the SPIE, Laser Technology for
Defense and Security VI 7686(1), M. Dubinskii and S. G. Post, eds., 768615 (2010).
9. I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100 W
Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
10. O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity
high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).
11. S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings
used in lasers for spectral control,” J. Opt. Soc. Am. B 30(6), 1402–1409 (2013).
12. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of
lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
13. J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV exposure on the crystallization and optical
properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008).
14. O. G. Andrusyak, “Dense spectral beam combining with volume Bragg gratings in photo-thermo-refractive
glass,” Ph.D. thesis, University of Central Florida, 2009.
Received 8 Jan 2014; revised 10 Mar 2014; accepted 24 Mar 2014; published 1 Apr 2014
7 April 2014 | Vol. 22, No. 7 | DOI:10.1364/OE.22.008291 | OPTICS EXPRESS 8291