C++实现的Floyd算法-链表版本
需积分: 4 174 浏览量
更新于2024-09-13
收藏 4KB TXT 举报
"这篇代码是使用C++实现的Floyd算法,通过链表来存储图的数据结构。Floyd算法,也称为Floyd-Warshall算法,是一种解决所有顶点对之间最短路径问题的动态规划算法。"
在图论中,Floyd算法是一种寻找图中所有顶点对之间最短路径的高效方法。它通过逐步考虑所有可能的中间节点来更新最短路径信息。这个算法的基本思想是,对于每一对顶点u和v,检查是否存在一个中间节点k使得经过k的路径比当前已知的u到v的路径更短。
代码首先定义了两个结构体:`Edgenode`和`Vexnode`。`Edgenode`用于表示图中的边,包含相邻顶点的索引(adj)和边的权重(weight),以及指向下一个边的指针(next)。`Vexnode`则代表图中的顶点,包含顶点的值(vex)和指向第一条边的指针(firstedge)。
`creatlist`函数用于创建图的邻接链表表示。它接受顶点数n和图的指针,然后随机生成边和权重,构建链表。对于每个顶点i,它会创建一个新边节点,设置其相邻顶点为i+1,并赋予一个1到120之间的随机权重。然后将新边添加到顶点i的链表中。
`getdistance`函数用于获取两个顶点之间的距离。它通过遍历链表找到两个顶点间的边,返回该边的权重,即两个顶点间的距离。
最后的`Floyd`函数是Floyd算法的核心。它接受顶点数n、一个二维整数数组`path`和`dist`,以及链表表示的图。`path`矩阵用于存储最短路径的信息,`dist`矩阵记录各顶点对之间的最短距离。算法通过三重循环,依次考虑所有可能的中间节点k,更新最短路径信息。如果发现通过k的路径比现有路径更短,就更新`dist`矩阵,并通过`path`矩阵记录这条路径。
这段代码实现了一个基于链表的Floyd算法,可以处理随机生成的加权有向图,找出图中所有顶点对之间的最短路径。在实际应用中,这种算法广泛应用于网络路由、交通路线规划等领域。
2012-05-08 上传
2020-09-20 上传
2021-02-18 上传
2021-02-18 上传
2021-02-18 上传
2022-10-23 上传
2016-04-03 上传
2017-12-26 上传
2021-09-16 上传
于泳浩
- 粉丝: 0
- 资源: 4
最新资源
- chef-chruby:chruby实用程序的厨师食谱
- Sitecore.Services.Client-boilerplate:非常简单的实体服务实现(包括控制器,存储库,模型等)
- hwkim94.github.io:数据
- js代码-笔试代码提交 sample
- SoapyPlutoSDR:此存储库移至pothoswareSoapyPlutoSDR
- nano-2.9.1.tar.gz
- NALab2
- lulu888
- imgsize:一个简单的Web应用程序,用于调整图像大小
- HelloID-Conn-Prov-Source-PowerSchool-SIS-Students:PowerSchool SIS-来源-学生
- 美萍诊所管理系统标准版
- advanced-nodejs
- nano-2.7.3.tar.gz
- Just A Lovely Little Adventure-开源
- cipher-crypt:被时间遗忘的密码的加密墓
- wap-pp.github.io