类比推理的准确性与认知科学分析

需积分: 3 0 下载量 17 浏览量 更新于2024-09-09 收藏 202KB PDF 举报
"这篇论文《The Accuracy of Analogical Reasoning》由徐晓等人撰写,探讨了类比推理的准确性在知识工程和管理领域的热点问题。文章指出,类比推理作为人类直觉系统的重要组成部分,因其创新性在认知科学和人工智能中受到广泛关注。然而,对于类比推理解决问题的准确性讨论相对较少。论文简要介绍了类比推理在认知领域的研究历史,并通过四个术语问题和卢瑟福原子模型两个实例来展示类比推理的应用。文章强调了类比推理创新性的关键步骤——关系转换过程,即基础领域中存在的关系应当存在于目标领域中,以此来推导新知识或解决新问题。" 类比推理是一种基于相似性的推理方法,它在人类思维中扮演着核心角色,特别是在创新和问题解决方面。直觉系统,即人类在面对复杂问题时快速、无意识的决策过程,其中类比推理是一个重要的工具。在知识工程和管理中,理解和利用这种直觉能力有助于提升决策效率和问题解决的创造性。 结构映射理论(Structure-Mapping Theory)是类比推理的一个经典理论框架,由George A. Lakoff和Mark Johnson提出。该理论认为,类比推理是通过对两个结构相似的模式进行映射,从而将知识从一个领域迁移到另一个领域。在这个过程中,关系的匹配和转换是关键,它允许我们从已知情境中提取信息并应用到新的、未知的情境。 论文中的四个术语问题可能是一个经典的示例,用于演示如何通过识别和匹配基本概念之间的关系来进行类比推理。而卢瑟福原子模型的建立,是一个科学史上的例子,其中类比推理被用来构建新的物理理论。卢瑟福将太阳系的模型类比到原子结构,从而提出了核式原子模型,这个模型成功解释了α粒子散射实验的结果。 关系转换过程(Relation-Shift Process)是类比推理中最具创新性的部分。在这个过程中,我们从基础领域识别出的关键关系被应用到目标领域,可能导致对目标问题的新理解或解决方案。这一过程体现了类比推理在创新思维中的价值,因为它鼓励跳出常规思考,发现潜在的关联,推动理论的发展和实际问题的解决。 《The Accuracy of Analogical Reasoning》这篇论文深入探讨了类比推理的准确性及其在认知和人工智能中的应用,尤其是在理解和利用人类直觉系统方面的贡献。通过对关系转换过程的分析,论文揭示了类比推理在创造新知识和解决复杂问题方面的强大潜力。

60/60 [==============================] - 19s 89ms/step - loss: 229.5776 - accuracy: 0.7818 - val_loss: 75.8205 - val_accuracy: 0.2848 Epoch 2/50 60/60 [==============================] - 5s 78ms/step - loss: 59.5195 - accuracy: 0.8323 - val_loss: 52.4355 - val_accuracy: 0.7152 Epoch 3/50 60/60 [==============================] - 5s 77ms/step - loss: 47.9256 - accuracy: 0.8453 - val_loss: 47.9466 - val_accuracy: 0.2848 Epoch 4/50 60/60 [==============================] - 5s 77ms/step - loss: 41.7355 - accuracy: 0.8521 - val_loss: 37.7279 - val_accuracy: 0.2848 Epoch 5/50 60/60 [==============================] - 5s 76ms/step - loss: 40.1783 - accuracy: 0.8505 - val_loss: 40.2293 - val_accuracy: 0.7152 Epoch 6/50 60/60 [==============================] - 5s 76ms/step - loss: 37.8785 - accuracy: 0.8781 - val_loss: 38.5298 - val_accuracy: 0.2848 Epoch 7/50 60/60 [==============================] - 5s 77ms/step - loss: 37.1490 - accuracy: 0.8786 - val_loss: 37.1918 - val_accuracy: 0.2848 Epoch 8/50 60/60 [==============================] - 5s 78ms/step - loss: 34.6709 - accuracy: 0.9156 - val_loss: 34.0621 - val_accuracy: 0.2765 Epoch 9/50 60/60 [==============================] - 5s 76ms/step - loss: 35.7891 - accuracy: 0.8849 - val_loss: 37.8741 - val_accuracy: 0.7152 Epoch 10/50 60/60 [==============================] - 5s 76ms/step - loss: 34.5359 - accuracy: 0.9141 - val_loss: 35.2664 - val_accuracy: 0.7152 Epoch 11/50 60/60 [==============================] - 5s 76ms/step - loss: 34.6172 - accuracy: 0.9016 - val_loss: 34.5135 - val_accuracy: 0.6258 Epoch 12/50 60/60 [==============================] - 5s 76ms/step - loss: 34.2331 - accuracy: 0.9083 - val_loss: 34.0945 - val_accuracy: 0.9168 Epoch 13/50 60/60 [==============================] - 5s 79ms/step - loss: 37.4175 - accuracy: 0.9000 - val_loss: 37.7885 - val_accuracy: 0.7152 16/16 - 0s - loss: 34.0621 - accuracy: 0.2765 - 307ms/epoch - 19ms/step Test accuracy: 0.27650728821754456

2023-06-07 上传

2021-03-26 20:54:33,596 - Model - INFO - Epoch 1 (1/200): 2021-03-26 20:57:40,380 - Model - INFO - Train Instance Accuracy: 0.571037 2021-03-26 20:58:16,623 - Model - INFO - Test Instance Accuracy: 0.718528, Class Accuracy: 0.627357 2021-03-26 20:58:16,623 - Model - INFO - Best Instance Accuracy: 0.718528, Class Accuracy: 0.627357 2021-03-26 20:58:16,623 - Model - INFO - Save model... 2021-03-26 20:58:16,623 - Model - INFO - Saving at log/classification/pointnet2_msg_normals/checkpoints/best_model.pth 2021-03-26 20:58:16,698 - Model - INFO - Epoch 2 (2/200): 2021-03-26 21:01:26,685 - Model - INFO - Train Instance Accuracy: 0.727947 2021-03-26 21:02:03,642 - Model - INFO - Test Instance Accuracy: 0.790858, Class Accuracy: 0.702316 2021-03-26 21:02:03,642 - Model - INFO - Best Instance Accuracy: 0.790858, Class Accuracy: 0.702316 2021-03-26 21:02:03,642 - Model - INFO - Save model... 2021-03-26 21:02:03,643 - Model - INFO - Saving at log/classification/pointnet2_msg_normals/checkpoints/best_model.pth 2021-03-26 21:02:03,746 - Model - INFO - Epoch 3 (3/200): 2021-03-26 21:05:15,349 - Model - INFO - Train Instance Accuracy: 0.781606 2021-03-26 21:05:51,538 - Model - INFO - Test Instance Accuracy: 0.803641, Class Accuracy: 0.738575 2021-03-26 21:05:51,538 - Model - INFO - Best Instance Accuracy: 0.803641, Class Accuracy: 0.738575 2021-03-26 21:05:51,539 - Model - INFO - Save model... 2021-03-26 21:05:51,539 - Model - INFO - Saving at log/classification/pointnet2_msg_normals/checkpoints/best_model.pth 我有类似于这样的一段txt文件,请你帮我写一段代码来可视化这些训练结果

2023-02-06 上传