没有合适的资源?快使用搜索试试~ 我知道了~
首页H.265编码标准(2015年):高效视频编码的最新进展
H.265,全称为High Efficiency Video Coding (HEVC),是国际电信联盟(International Telecommunication Union, ITU)在2015年4月发布的多媒体处理领域的最新标准,代号为ITU-T H.265。作为继H.264之后的重要视频编码标准,H.265旨在提供更高的压缩效率,从而实现更高质量的视频传输和存储,同时保持较低的数据带宽需求。这个标准适用于基础设施中的音频和视频服务,特别是在移动视频编码方面。
H.265的核心特点是采用了先进的编码技术,如高效的空间冗余利用、帧内预测、纹理预测以及更强的并行处理能力。它引入了更精细的宏块分割和变换块尺寸选择,以及对高动态范围(HDR)和高分辨率视频的支持,这使得它能够更好地适应当前及未来高清和超高清视频的需求,包括4K、8K甚至更高分辨率的应用。
在H.265之前的相关系列标准中,H.260至H.279关注的是编码的视觉电话系统特性,包括系统的基础设施、传输多路复用和同步、系统层面的考虑、通信程序以及编码的移动视频部分。而H.280至H.299则涉及音频和视频服务的系统与终端设备。H.300至H.349关注目录服务架构,H.350至H.359关注服务质量架构,H.360至H.369涵盖远程呈现,H.420至H.429提供多媒体补充服务,H.450至H.499则涉及移动性和协作的协议和流程。
H.265是多媒体处理领域的一项里程碑,它不仅提升了视频压缩效率,还为未来的高清晰度和沉浸式视频体验奠定了基础。对于任何从事视频编码、传输、存储或处理的行业来说,理解和掌握H.265标准都是至关重要的,因为它将直接影响到视频质量和网络资源的使用效率。随着技术的发展,H.265的后续更新和扩展可能还会进一步优化这些特性,以满足不断变化的市场需求。
xiv Rec. ITU-T H.265 v3 (04/2015)
LIST OF FIGURES
Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture .............. 22
Figure 6-2 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture .............. 22
Figure 6-3 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture .............. 23
Figure 6-4 – A picture with 11 by 9 luma coding tree blocks that is partitioned into two slices, the first of which is
partitioned into three slice segments (informative) ............................................................................... 24
Figure 6-5 – A picture with 11 by 9 luma coding tree blocks that is partitioned into two tiles and one slice (left) or
is partitioned into two tiles and three slices (right) (informative) ......................................................... 24
Figure 7-1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to FD_NUT,
SUFFIX_SEI_NUT, VPS_NUT, SPS_NUT, PPS_NUT, RSV_VCL_N10, RSV_VCL_R11,
RSV_VCL_N12, RSV_VCL_R13, RSV_VCL_N14, RSV_VCL_R15, RSV_IRAP_VCL22 or
RSV_IRAP_VCL23, or in the range of RSV_VCL24..RSV_VCL31, RSV_NVCL41..RSV_NVCL47
or UNSPEC48..UNSPEC63 ................................................................................................................. 69
Figure 8-1 – Intra prediction mode directions (informative) ............................................................................... 118
Figure 8-2 – Intra prediction angle definition (informative) ................................................................................ 126
Figure 8-3 – Spatial motion vector neighbours (informative) ............................................................................. 142
Figure 8-4 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation ............................................... 150
Figure 8-5 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for eighth sample chroma interpolation ............................................. 152
Figure 9-1 – Illustration of CABAC parsing process for a syntax element synEl (informative) ......................... 185
Figure 9-2 – Spatial neighbour T that is used to invoke the coding tree block availability derivation process relative
to the current coding tree block (informative) .................................................................................... 186
Figure 9-3 – Illustration of CABAC initialization process (informative) ............................................................ 187
Figure 9-4 – Illustration of CABAC storage process (informative) ..................................................................... 197
Figure 9-5 – Overview of the arithmetic decoding process for a single bin (informative) .................................. 213
Figure 9-6 – Flowchart for decoding a decision .................................................................................................. 214
Figure 9-7 – Flowchart of renormalization .......................................................................................................... 216
Figure 9-8 – Flowchart of bypass decoding process ............................................................................................ 217
Figure 9-9 – Flowchart of decoding a decision before termination ..................................................................... 218
Figure 9-10 – Flowchart for encoding a decision ................................................................................................ 220
Figure 9-11 – Flowchart of renormalization in the encoder ................................................................................ 221
Figure 9-12 – Flowchart of PutBit(B) .................................................................................................................. 221
Figure 9-13 – Flowchart of encoding bypass ....................................................................................................... 222
Figure 9-14 – Flowchart of encoding a decision before termination ................................................................... 223
Figure 9-15 – Flowchart of flushing at termination ............................................................................................. 223
Figure C.1 – Structure of byte streams and NAL unit streams for HRD conformance checks ............................ 244
Figure C.2 – HRD buffer model .......................................................................................................................... 247
Figure D.1 – Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields .... 284
Figure D.2 – Nominal vertical and horizontal sampling locations of 4:2:2 samples in top and bottom fields .... 285
Figure D.3 – Nominal vertical and horizontal sampling locations of 4:4:4 samples in top and bottom fields .... 285
Figure D.4 – Rearrangement and upconversion of side-by-side packing arrangement with
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0 and ( x, y ) equal to
( 0, 0 ) or ( 4, 8 ) for both constituent frames ...................................................................................... 307
Figure D.5 – Rearrangement and upconversion of side-by-side packing arrangement with
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, ( x, y ) equal to
( 12, 8 ) for constituent frame 0 and ( x, y ) equal to ( 0, 0 ) or ( 4, 8 ) for constituent frame 1 .......... 308
Figure D.6 – Rearrangement and upconversion of top-bottom packing arrangement with
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0 and ( x, y ) equal to
( 0, 0 ) or ( 8, 4 ) for both constituent frames ...................................................................................... 308
Rec. ITU-T H.265 v3 (04/2015) xv
Figure D.7 – Rearrangement and upconversion of top-bottom packing arrangement with
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0, ( x, y ) equal to
( 8, 12 ) for constituent frame 0 and ( x, y ) equal to ( 0, 0 ) or ( 8, 4 ) for constituent frame 1 .......... 309
Figure D.8 – Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling
(frame_packing_arrangement_type equal to 3 with quincunx_sampling_flag equal to 1) ................. 309
Figure D.9 – Rearrangement of a temporal interleaving frame arrangement (frame_packing_arrangement_type
equal to 5) ........................................................................................................................................... 310
Figure D.10 – Rearrangement of a segmented rectangular frame packing arrangement ..................................... 324
Figure D.11 – A knee function with num_knee_points_minus1 equal to 2 ......................................................... 337
Figure E.1 – Location of chroma samples for top and bottom fields for chroma_format_idc equal to 1 (4:2:0 chroma
format) as a function of chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field ............................................................................................. 353
Figure F.1 – Bitstream-partition-specific HRD buffer model .............................................................................. 436
LIST OF FIGURES
Table 5-1 – Operation precedence from highest (at top of table) to lowest (at bottom of table) ........................... 18
Table 6-1 – SubWidthC and SubHeightC values derived from chroma_format_idc and separate_colour_plane_flag
.............................................................................................................................................................. 21
Table 7-1 – NAL unit type codes and NAL unit type classes ................................................................................ 63
Table 7-2 – Interpretation of pic_type ................................................................................................................... 83
Table 7-3 – Specification of sizeId ........................................................................................................................ 87
Table 7-4 – Specification of matrixId according to sizeId, prediction mode and colour component .................... 87
Table 7-5 – Specification of default values of ScalingList[ 0 ][ matrixId ][ i ] with i = 0..15 ............................... 87
Table 7-6 – Specification of default values of ScalingList[ 1..3 ][ matrixId ][ i ] with i = 0..63 ........................... 88
Table 7-7 – Name association to slice_type .......................................................................................................... 90
Table 7-8 – Specification of the SAO type ............................................................................................................ 98
Table 7-9 – Specification of the SAO edge offset class....................................................................................... 100
Table 7-10 – Name association to prediction mode and partitioning type ........................................................... 101
Table 7-11 – Name association to inter prediction mode .................................................................................... 102
Table 8-1 – Specification of intra prediction mode and associated names .......................................................... 118
Table 8-2 – Specification of modeIdx ................................................................................................................. 120
Table 8-3 – Specification of intraPredModeC when ChromaArrayType is equal to 2 ........................................ 120
Table 8-4 – Specification of intraHorVerDistThres[ nTbS ] for various transform block sizes .......................... 124
Table 8-5 – Specification of intraPredAngle ....................................................................................................... 126
Table 8-6 – Specification of invAngle ................................................................................................................. 126
Table 8-7 – Specification of l0CandIdx and l1CandIdx ...................................................................................... 139
Table 8-8 – Assignment of the luma prediction sample predSampleLX
L
............................................................ 151
Table 8-9 – Assignment of the chroma prediction sample predSampleLX
C
for ( X, Y ) being replaced by ( 1, b ),
( 2, c ), ( 3, d ), ( 4, e ), ( 5, f ), ( 6, g ) and ( 7, h ), respectively ......................................................... 153
Table 8-10 – Specification of Qp
C
as a function of qPi for ChromaArrayType equal to 1 .................................. 160
Table 8-11 – Name of association to edgeType ................................................................................................... 167
Table 8-12 – Derivation of threshold variables β′ and t
C
′ from input Q .............................................................. 175
Table 8-13 – Specification of hPos and vPos according to the sample adaptive offset class .............................. 182
Table 9-1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative) ......... 183
Table 9-2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative) ................. 183
Table 9-3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v) . 184
Table 9-4 – Association of ctxIdx and syntax elements for each initializationType in the initialization process 189
Table 9-5 – Values of initValue for ctxIdx of sao_merge_left_flag and sao_merge_up_flag ............................. 190
xvi Rec. ITU-T H.265 v3 (04/2015)
Table 9-6 – Values of initValue for ctxIdx of sao_type_idx_luma and sao_type_idx_chroma ........................... 190
Table 9-7 – Values of initValue for ctxIdx of split_cu_flag ................................................................................ 190
Table 9-8 – Values of initValue for ctxIdx of cu_transquant_bypass_flag ......................................................... 190
Table 9-9 – Values of initValue for ctxIdx of cu_skip_flag ................................................................................ 190
Table 9-10 – Values of initValue for ctxIdx of pred_mode_flag ......................................................................... 191
Table 9-11 – Values of initValue for ctxIdx of part_mode .................................................................................. 191
Table 9-12 – Values of initValue for ctxIdx of prev_intra_luma_pred_flag ....................................................... 191
Table 9-13 – Values of initValue for ctxIdx of intra_chroma_pred_mode .......................................................... 191
Table 9-14 – Values of initValue for ctxIdx of rqt_root_cbf ............................................................................... 191
Table 9-15 – Values of initValue for ctxIdx of merge_flag ................................................................................. 191
Table 9-16 – Values of initValue for ctxIdx of merge_idx .................................................................................. 192
Table 9-17 – Values of initValue for ctxIdx of inter_pred_idc............................................................................ 192
Table 9-18 – Values of initValue for ctxIdx of ref_idx_l0 and ref_idx_l1 .......................................................... 192
Table 9-19 – Values of initValue for ctxIdx of mvp_l0_flag and mvp_l1_flag .................................................. 192
Table 9-20 – Values of initValue for ctxIdx of split_transform_flag .................................................................. 192
Table 9-21 – Values of initValue for ctxIdx of cbf_luma .................................................................................... 192
Table 9-22 – Values of initValue for ctxIdx of cbf_cb and cbf_cr ...................................................................... 193
Table 9-23 – Values of initValue for ctxIdx of abs_mvd_greater0_flag and abs_mvd_greater1_flag ................ 193
Table 9-24 – Values of initValue for ctxIdx of cu_qp_delta_abs ........................................................................ 193
Table 9-25 – Values of initValue for ctxIdx of transform_skip_flag .................................................................. 193
Table 9-26 – Values of initValue for ctxIdx of last_sig_coeff_x_prefix ............................................................. 193
Table 9-27 – Values of initValue for ctxIdx of last_sig_coeff_y_prefix ............................................................. 194
Table 9-28 – Values of initValue for ctxIdx of coded_sub_block_flag ............................................................... 194
Table 9-29 – Values of initValue for ctxIdx of sig_coeff_flag ............................................................................ 194
Table 9-30 – Values of initValue for ctxIdx of coeff_abs_level_greater1_flag .................................................. 195
Table 9-31 – Values of initValue for ctxIdx of coeff_abs_level_greater2_flag .................................................. 195
Table 9-32 – Values of initValue for ctxIdx of explicit_rdpcm_flag .................................................................. 195
Table 9-33 – Values of initValue for ctxIdx of explicit_rdpcm_dir_flag ............................................................ 195
Table 9-34 – Values of initValue for ctxIdx of cu_chroma_qp_offset_flag ........................................................ 195
Table 9-35 – Values of initValue for ctxIdx of cu_chroma_qp_offset_idx ......................................................... 196
Table 9-36 – Values of initValue for ctxIdx of log2_res_scale_abs_plus1 ......................................................... 196
Table 9-37 – Values of initValue for ctxIdx of res_scale_sign_flag ................................................................... 196
Table 9-38 – Syntax elements and associated binarizations ................................................................................ 198
Table 9-39 – Bin string of the unary binarization (informative) .......................................................................... 201
Table 9-40 – Binarization for part_mode ............................................................................................................. 203
Table 9-41 – Binarization for intra_chroma_pred_mode..................................................................................... 203
Table 9-42 – Binarization for inter_pred_idc ...................................................................................................... 204
Table 9-43 – Assignment of ctxInc to syntax elements with context coded bins ................................................ 206
Table 9-44 – Specification of ctxInc using left and above syntax elements ........................................................ 208
Table 9-45 – Specification of ctxIdxMap[ i ] ...................................................................................................... 211
Table 9-46 – Specification of rangeTabLps depending on the values of pStateIdx and qRangeIdx .................... 215
Table 9-47 – State transition table ....................................................................................................................... 216
Table A.1 – Allowed values for syntax elements in the format range extensions profiles .................................. 229
Table A.2 – Bitstream indications for conformance to format range extensions profiles .................................... 231
Table A.3 – Bitstream indications for conformance to format range extensions high throughput profiles ......... 233
Table A.4 – General tier and level limits ............................................................................................................. 235
Rec. ITU-T H.265 v3 (04/2015) xvii
Table A.5 – Tier and level limits for the video profiles ....................................................................................... 237
Table A.6 – Specification of CpbVclFactor, CpbNalFactor, FormatCapabilityFactor and MinCrScaleFactor ... 238
Table A.7 – Maximum picture rates (pictures per second) at level 1 to 4.1 for some example picture sizes when
MinCbSizeY is equal to 64 ................................................................................................................. 239
Table A.8 – Maximum picture rates (pictures per second) at level 5 to 6.2 for some example picture sizes when
MinCbSizeY is equal to 64 ................................................................................................................. 240
Table D.1 – Persistence scope of SEI messages (informative) ............................................................................ 277
Table D.2 – Interpretation of pic_struct ............................................................................................................... 284
Table D.3 – scene_transition_type values ........................................................................................................... 290
Table D.4 – film_grain_model_id values ............................................................................................................ 293
Table D.5 – blending_mode_id values ................................................................................................................ 295
Table D.6 – filter_hint_type values ..................................................................................................................... 299
Table D.7 – Interpretation of camera_iso_speed_idc and exposure_index_idc ................................................... 302
Table D.8 – Definition of frame_packing_arrangement_type ............................................................................. 304
Table D.9 – Definition of content_interpretation_type ........................................................................................ 305
Table D.10 – Interpretation of hash_type ............................................................................................................ 312
Table D.11 – Definition of counting_type[ i ] values .......................................................................................... 320
Table D.12 – Definition of segmented_rect_content_interpretation_type ........................................................... 323
Table D.13 – ver_chroma_filter_idc values ......................................................................................................... 328
Table D.14 – hor_chroma_filter_idc values ........................................................................................................ 328
Table D.15 – Chroma sampling format indicated by target_format_idc ............................................................. 329
Table D.16 – Constraints on the value of num_vertical_filters ........................................................................... 330
Table D.17 – Constraints on the value of num_horizontal_filters ....................................................................... 330
Table D.18 – Values of verFilterCoeff and verTapLength when ver_chroma_filter_idc is equal to 2 ................ 331
Table D.19 – Values of horFilterCoeff and horTapLength when hor_chroma_filter_idc is equal to 2 ............... 331
Table D.20 – Usage of chroma filter in the vertical direction ............................................................................. 334
Table D.21 – Usage of chroma filter in the horizontal direction ......................................................................... 336
Table E.1 – Interpretation of sample aspect ratio indicator ................................................................................. 345
Table E.2 – Meaning of video_format ................................................................................................................. 346
Table E.3 – Colour primaries ............................................................................................................................... 347
Table E.4 – Transfer characteristics..................................................................................................................... 348
Table E.5 – Matrix coefficients ........................................................................................................................... 352
Table E.6 – Divisor for computation of DpbOutputElementalInterval[ n ] ......................................................... 359
Table F.1 – Mapping of ScalabiltyId to scalability dimensions ........................................................................... 386
Table F.2 – Mapping of AuxId to the type of auxiliary pictures ......................................................................... 387
Table F.3 – Specification of CompatibleProfileList ............................................................................................ 432
Table F.4 – Persistence scope of SEI messages (informative) ............................................................................. 455
Table G.1 – Persistence scope of SEI messages (informative) ............................................................................ 485
Table G.2 – Association between camera parameter variables and syntax elements .......................................... 487
Table G.3 – Definition of depth_representation_type ......................................................................................... 489
Table G.4 – Association between depth parameter variables and syntax elements ............................................. 489
Table G.5 – Association between camera parameter variables and syntax elements. ......................................... 494
Table H.1 – 16-phase luma resampling filter ....................................................................................................... 502
Table H.2 – 16-phase chroma resampling filter ................................................................................................... 503
Table I.1 – Name association to prediction mode and partitioning type .............................................................. 544
Table I.2 – Specification of intra prediction mode and associated names ........................................................... 550
xviii Rec. ITU-T H.265 v3 (04/2015)
Table I.3 – Specification of divCoeff depending on sDenomDiv ........................................................................ 579
Table I.4 – Association of ctxIdx and syntax elements for each initializationType in the initialization process 592
Table I.5 – Values of initValue for skip_intra_flag ctxIdx .................................................................................. 593
Table I.6 – Values of initValue for no_dim_flag ctxIdx ...................................................................................... 593
Table I.7 – Values of initValue for depth_intra_mode_idx_flag ctxIdx .............................................................. 593
Table I.8 – Values of initValue for skip_intra_mode_idx ctxIdx ........................................................................ 593
Table I.9 – Values of initValue for dbbp_flag ctxIdx .......................................................................................... 593
Table I.10 – Values of initValue for dc_only_flag ctxIdx ................................................................................... 593
Table I.11 – Values of initValue for iv_res_pred_weight_idx ctxIdx ................................................................. 594
Table I.12 – Values of initValue for illu_comp_flag ctxIdx ................................................................................ 594
Table I.13 – Values of initValue for depth_dc_present_flag ctxIdx .................................................................... 594
Table I.14 – Values of initValue for depth_dc_abs ctxIdx .................................................................................. 594
Table I.15 – Syntax elements and associated binarizations ................................................................................. 595
Table I.16 – Binarization for part_mode .............................................................................................................. 596
Table I.17 – Assignment of ctxInc to syntax elements with context coded bins ................................................. 597
Table I.18 – Specification of ctxInc using left and above syntax elements ......................................................... 598
Table I.19 – Persistence scope of SEI messages (informative)............................................................................ 603
Table I.20 – Interpretation of depth_type ............................................................................................................ 603
Table I.21 – Locations of the top-left luma samples of constituent pictures packed in a picture with ViewIdx greater
than 0 relative to the top-left luma sample of this picture ................................................................... 604
剩余633页未读,继续阅读
2019-12-05 上传
2020-10-14 上传
2015-10-22 上传
2020-02-27 上传
2019-12-15 上传
2018-10-17 上传
2019-06-25 上传
locust647
- 粉丝: 5
- 资源: 6
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- BottleJS快速入门:演示JavaScript依赖注入优势
- vConsole插件使用教程:输出与复制日志文件
- Node.js v12.7.0版本发布 - 适合高性能Web服务器与网络应用
- Android中实现图片的双指和双击缩放功能
- Anum Pinki英语至乌尔都语开源词典:23000词汇会话
- 三菱电机SLIMDIP智能功率模块在变频洗衣机的应用分析
- 用JavaScript实现的剪刀石头布游戏指南
- Node.js v12.22.1版发布 - 跨平台JavaScript环境新选择
- Infix修复发布:探索新的中缀处理方式
- 罕见疾病酶替代疗法药物非临床研究指导原则报告
- Node.js v10.20.0 版本发布,性能卓越的服务器端JavaScript
- hap-java-client:Java实现的HAP客户端库解析
- Shreyas Satish的GitHub博客自动化静态站点技术解析
- vtomole个人博客网站建设与维护经验分享
- MEAN.JS全栈解决方案:打造MongoDB、Express、AngularJS和Node.js应用
- 东南大学网络空间安全学院复试代码解析
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功