Python NLTK 3 Cookbook:自然语言处理实践指南

需积分: 10 6 下载量 38 浏览量 更新于2024-07-18 收藏 1.84MB PDF 举报
"Python-3-Text-Processing-with-NLTK-3-Cookbook 是一本关于自然语言处理的实践性指南,包含80多个实用的Python NLTK 3.0技术食谱" 本书“Python-3-Text-Processing-with-NLTK-3-Cookbook”由Jacob Perkins撰写,主要面向对自然语言处理(NLP)感兴趣的Python开发者。NLTK(Natural Language Toolkit)是Python中最流行的NLP库之一,提供了丰富的工具和资源,用于文本分析、词汇处理、句法分析和语义理解等任务。 书中涵盖了超过80个实用的NLP技术食谱,这些食谱旨在帮助读者解决实际问题,包括但不限于以下几个方面: 1. **基础文本预处理**:介绍如何清洗和标准化文本数据,如去除标点符号、停用词移除、词干提取和词形还原等。 2. **词汇分析**:讲解如何使用NLTK进行词汇频率统计、词性标注以及构建词汇表。 3. **分词**:探讨NLTK的分词算法,如基于规则和统计的分词方法,以及自定义分词规则。 4. **句法分析**:介绍NLTK中的依存关系解析和句法树构造,帮助读者理解句子结构。 5. **命名实体识别**:讲解如何识别文本中的专有名词,如人名、地名、组织名等。 6. **情感分析**:讨论如何使用NLTK进行情感极性分析,以理解文本的情感倾向。 7. **文本分类**:介绍文本分类的基本原理和NLTK中的分类器,如朴素贝叶斯和决策树等。 8. **主题建模**:讲解LDA(Latent Dirichlet Allocation)等主题模型,用于发现文本中的隐藏主题。 9. **机器翻译**和**词性转移**:介绍NLTK在这些领域的应用,以及如何利用它来构建简单的翻译系统。 10. **文本相似度和聚类**:讨论如何使用余弦相似度、Jaccard相似性和TF-IDF等方法找出文本之间的相似性,并进行文本聚类。 11. **语义理解**:探讨WordNet等资源在词汇语义关系上的应用,以及如何进行词义消歧。 此外,本书还强调了实践性,每个章节都包含详尽的代码示例,让读者可以直接在自己的Python环境中尝试。同时,作者提醒读者,尽管已尽力确保信息的准确性,但书中内容仅供参考,不提供任何明示或暗示的保证。 “Python-3-Text-Processing-with-NLTK-3-Cookbook”是一本适合初学者和有一定经验的开发者深入学习NLP的实用书籍,通过一系列的实例,帮助读者掌握NLTK库的使用,从而在自然语言处理领域提升技能。
2015-01-21 上传
http://www.amazon.com/Python-Text-Processing-NLTK-Cookbook/dp/1782167854/ Paperback: 310 pages Publisher: Packt Publishing - ebooks Account (August 26, 2014) Language: English Over 80 practical recipes on natural language processing techniques using Python's NLTK 3.0 About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Learn how to do custom sentiment analysis and named entity recognition Work through the natural language processing concepts with simple and easy-to-follow programming recipes Who This Book Is For This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you've learned the limits of regular expressions the hard way, or you've realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful. In Detail This book will show you the essential techniques of text and language processing. Starting with tokenization, stemming, and the WordNet dictionary, you'll progress to part-of-speech tagging, phrase chunking, and named entity recognition. You'll learn how various text corpora are organized, as well as how to create your own custom corpus. Then, you'll move onto text classification with a focus on sentiment analysis. And because NLP can be computationally expensive on large bodies of text, you'll try a few methods for distributed text processing. Finally, you'll be introduced to a number of other small but complementary Python libraries for text analysis, cleaning, and parsing. This cookbook provides simple, straightforward examples so you can quickly learn text processing with Python and NLTK.