使用OpenCV在Python中训练人手识别分类器
版权申诉
5星 · 超过95%的资源 47 浏览量
更新于2024-09-08
20
收藏 1.02MB PDF 举报
"在Python中使用OpenCV训练分类器进行特定物体实时识别,本文以人手识别为例,涉及物体识别、OpenCV、机器学习、Python编程以及物体分类。"
在计算机视觉领域,OpenCV库是一个强大的工具,它包含了多种预先训练好的分类器,可以用于物体检测和识别。然而,当需要识别特定的、可能未被内置分类器覆盖的物体时,如人手,我们需要自定义训练分类器。以下是对如何在Python中利用OpenCV进行此类任务的详细步骤:
1. **运行环境配置**
- 操作系统:Windows 10 64位
- 开发环境:Visual Studio Code
- Python版本:3.7
- OpenCV版本:opencv-snippets 1.2.2
2. **训练分类器**
- **正样本制作**:
- 收集包含目标物体(如人手)的图像,将其保存到一个文件夹中,便于管理和处理。
- 将这些图像转换为灰度图,并调整至统一尺寸,例如30x40像素。这可以通过OpenCV的`cvtColor`函数将RGB图像转为灰度,然后使用`resize`函数缩放图像。
- **负样本准备**:
- 负样本是指不包含目标物体的图像,用于告诉分类器哪些不是我们要识别的物体。同样,它们也需要转化为灰度图并调整尺寸。
- **创建特征文件**:
- 使用OpenCV的`Haar特征`或`LBP特征`提取工具(如`opencv_createsamples`)从正负样本中提取特征,这些特征将用于训练分类器。
- **训练AdaBoost分类器**:
- 使用`opencv_traincascade`工具,结合提取的特征和对应的类别标签(正负样本),训练一个级联分类器,通常采用AdaBoost算法。
- **保存训练结果**:
- 训练完成后,保存生成的级联分类器文件(`.xml`格式),以便后续识别阶段使用。
3. **实时识别测试**
- **加载分类器**:
- 在Python代码中加载之前训练好的`.xml`文件。
- **视频流处理**:
- 使用OpenCV的`VideoCapture`获取摄像头输入,或读取视频文件。
- **帧处理**:
- 对每一帧图像,先进行灰度化和尺寸调整,然后应用级联分类器进行物体检测。
- `detectMultiScale`函数用于在图像上滑动窗口检测物体,返回的是物体位置的矩形坐标。
- **显示结果**:
- 在原始图像上标记出检测到的物体,并显示结果。
通过以上流程,我们可以实现特定物体(例如人手)的实时识别。需要注意的是,训练效果受正负样本质量、特征选择、训练参数等因素影响,可能需要多次调整和优化才能达到理想的效果。此外,训练大量高质量的样本对于提高识别准确率至关重要。
8780 浏览量
1830 浏览量
102 浏览量
292 浏览量
2024-04-29 上传
2024-06-25 上传
176 浏览量
128 浏览量
老中医@
- 粉丝: 25
- 资源: 6
最新资源
- 软件体系结构 系统分析师 系统架构师
- 微内核工作流引擎体系结构与部分解决方案参考
- svn tortoise
- C#教程 基于pdf格式
- j2ee中文指南(安全,事物,ejb等)
- PC与三菱FX2N型PLC串口通信的实现
- S3C2410完全开发流程
- flex程序员杂志,国内唯一的flex专业杂志,里面包含很多精华帖子
- 详细图解说明多普达S1 手机永久解锁刷机
- jquery入门教程
- ActionScript 3.0 Cookbook 中文完整版
- c#2003水晶报表总结,讲的很细很全面。
- 软件工程思想 讲述“软件开发”和“做程序员”的道理
- Microsoft Visual Studio .NET 使用技巧手册
- 08年下半年网络工程师考试题(下午).pdf
- dot Net Mobile