MNIST CNN实现详解:7层结构与参数计算

版权申诉
0 下载量 184 浏览量 更新于2024-07-02 收藏 476KB PDF 举报
"卷积神经网络(CNN)代码实现(MNIST)解析.pdf"文档详细介绍了卷积神经网络在手写数字识别MNIST数据集上的应用。该网络结构由七层组成:输入层、C1层(卷积层)、S2层(降采样层)、C3层、S4层、C5层和输出层。每个层的功能和参数计算如下: 1. 输入层:MNIST数据集中的图像尺寸为32*32,由于是灰度图像,每个像素值表示亮度,没有额外的权值和偏置。 2. C1层:采用5x5大小的卷积核,输出6个特征图,每种卷积核对应一个特征图,所以总参数包括6个5x5权重矩阵和6个偏置项,总共150个权重项加上6个偏置项,共计156个参数。 3. S2层:使用2x2的下采样窗口,同样有6个窗口类型,输出的特征图尺寸减半到14x14。这里的参数计算与C1层类似,总计12个参数。 4. C3层:卷积核大小增加到5x5,输出16个特征图,因此有96个5x5权重矩阵和16个偏置项,共计1440个权重项加上16个偏置项,总计1456个参数。 5. S4层:继续使用2x2下采样,输出16个特征图,1个窗口类型,共有16个参数。 6. C5层:卷积核扩大到5x5,输出120个特征图,这导致1920个5x5权重矩阵和120个偏置项,总计23040个权重项加上120个偏置项,总计23160个参数。 7. 输出层:最后是全连接层,使用1x1的卷积核来分类,120个输入特征与10个类别对应,所以有1200个权重项和10个偏置项,总共1210个参数。 整个CNN模型的参数总数可以通过以下方式计算:输入层无参数,然后将C1层到输出层的参数相加得到:156 + 12 + 1440 + 16 + 16 + 23160 + 1210 = 27114个参数。这些参数在代码中的定义通过变量如`len_weight_C1_CNN`等来管理。 代码片段展示了如何定义这些层的映射数量和参数长度,例如`#define num_map_input_CNN 1`定义了输入层的映射数量为1(即一个输入图像)。通过这些定义,程序员可以动态地配置网络结构,以便于不同规模的输入和不同的网络深度。 总结来说,该文档主要讲解了如何构建一个用于MNIST数据集的CNN模型,包括了各层的结构、参数计算以及相关的代码示例,这对于理解和实现卷积神经网络的读者来说是非常实用的资源。