Python自然语言处理实战

5星 · 超过95%的资源 需积分: 50 501 下载量 131 浏览量 更新于2024-07-22 收藏 5.18MB PDF 举报
"Natural Language Processing with Python" 是一本由Steven Bird、Ewan Klein和Edward Loper合著的书籍,专注于介绍如何使用Python进行自然语言处理(NLP)。这本书覆盖了从基础到进阶的多个NLP主题,适合对自然语言处理感兴趣或需要使用Python进行文本分析的读者。 书中详细讲解了以下知识点: 1. 语言处理和Python:这一章介绍了NLP的基本概念,以及为何选择Python作为实现工具,讨论了Python在处理文本数据时的优势和可用的库。 2. 访问语料库和词汇资源:这部分内容涉及如何获取和利用各种文本语料库,如Brown、Penn Treebank等,以及如何使用词汇资源,如WordNet,为NLP任务提供基础。 3. 处理原始文本:讲解了预处理文本的步骤,包括分词、去除停用词、标点符号处理等,以准备数据供进一步分析。 4. 编写结构化程序:介绍如何构建模块化的NLP程序,强调了使用函数和类来组织代码的重要性。 5. 词性标注:详细讲述了如何对单词进行分类和标注,例如名词、动词、形容词等,这是理解句子结构的基础。 6. 学习文本分类:涵盖了监督学习方法,如朴素贝叶斯、决策树等,用于将文本归类到不同的类别中。 7. 从文本中提取信息:讨论了信息抽取技术,如命名实体识别(NER),以及如何提取关键信息,如日期、人名、地点等。 8. 分析句子结构:深入解析句法分析,包括使用依存性和 constituency parse树来理解句子的结构。 9. 基于特征的语法:介绍了如何构建和应用上下文无关文法(CFG)或其他形式的规则来解析句子的结构。 10. 句子意义分析:探讨了句意理解的挑战,包括语义角色标注和指代消解等,帮助计算机理解文本中的含义。 11. 管理语言数据:分享了处理大量语言数据的方法,包括存储、索引和检索策略。 12. 附录和索引:提供了额外的资源,如参考文献,以及方便查找特定话题的索引。 本书不仅适合初学者,也对有一定经验的NLP开发者具有参考价值,它使用Python的自然语言工具包(NLTK)作为主要的实现工具,通过实际案例和练习帮助读者掌握自然语言处理的核心概念和技术。通过阅读本书,读者可以构建起处理和理解人类语言的强大工具,从而在文本挖掘、情感分析、机器翻译等领域发挥重要作用。
2017-08-11 上传
Python Natural Language Processing by Jalaj Thanaki English | 31 July 2017 | ISBN: 1787121429 | ASIN: B072B8YWCJ | 486 Pages | AZW3 | 11.02 MB Key Features Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Book Description This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. What you will learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot,