MATLAB源码之家:birch复数存储与运算实战项目案例

版权申诉
0 下载量 21 浏览量 更新于2024-11-22 收藏 105KB RAR 举报
资源摘要信息:"ixty232,birch MATLAB源码,matlab源码之家" 在本文档中,我们将深入探讨“ixty232,birch MATLAB源码,matlab源码之家”这一项目的核心内容。根据文件提供的标题、描述和标签,以及压缩包文件的名称列表,我们可以了解到这是一个关于MATLAB编程语言的源码项目,专注于实现一个特定的功能:存储复数(包括实部和虚部)并实现它们的加法运算。这一项目能够作为学习MATLAB实战项目案例的宝贵资源。在详细阐述该项目知识点之前,我们有必要先理解几个关键概念。 首先,MATLAB是一种高性能的数值计算环境和第四代编程语言。它广泛应用于工程计算、数据分析、算法开发等领域。MATLAB的核心是矩阵运算,它提供了丰富的函数库来简化编程和提高效率。此外,MATLAB支持与其他编程语言的接口,如C、C++和Fortran,也支持生成独立的可执行文件和嵌入式系统。 其次,复数是数学中的一种数,包含实部和虚部。在MATLAB中,复数可以使用标准的数学表示法,例如,实部为5,虚部为3的复数可以表示为5+3i。MATLAB提供了完整的工具来处理复数的运算,包括加法、减法、乘法、除法以及复数的指数和对数运算等。 现在,让我们探讨“ixty232,birch MATLAB源码,matlab源码之家”项目中可能包含的知识点: 1. 复数的存储结构:在MATLAB中创建一个结构体来存储复数的实部和虚部。结构体(struct)是MATLAB中一种可以存储不同类型数据的容器。在这个项目中,结构体可能包含两个字段,一个用于实部,一个用于虚部。 2. 复数加法功能实现:项目的主要功能是实现复数的加法运算。在数学上,两个复数a+bi和c+di相加的结果是(a+c)+(b+d)i。在MATLAB中,可以使用标准的算术运算符来完成这一操作,也可以设计特定的函数来封装这一过程。 3. 源码的设计与组织:由于项目描述中提到的是一个“结构体”和“加法”功能,源码的设计可能会涉及结构体的定义、函数的创建和使用。源码可能会包含以下部分: - 结构体定义:明确复数的实部和虚部的存储方式。 - 函数定义:创建一个函数来实现复数加法,可能包含输入参数检查和结果输出。 - 测试代码:编写一些测试用例以验证结构体和加法功能的正确性。 4. MATLAB编程实践:该源码项目可以作为学习和实践MATLAB编程的案例。学习者可以通过分析源码来了解如何在MATLAB中定义和使用结构体,如何设计函数来处理特定的数学运算,以及如何进行基本的程序测试。 5. MATLAB项目结构:由于资源信息中只提供了项目标题和描述,并没有具体的功能实现细节,学习者还需要了解如何在MATLAB项目中合理组织代码文件,包括如何使用.m文件、.p文件等,以及如何构建包含多个函数和子程序的项目结构。 总结来说,"ixty232,birch MATLAB源码,matlab源码之家"项目是一个旨在通过编程实现复数运算的MATLAB源码项目。通过研究该项目,学习者可以掌握MATLAB中结构体的定义和使用,理解复数的基本运算,并通过编写和测试代码来提升MATLAB编程能力。对于希望深入学习MATLAB语言并将其应用于工程和科研领域的个人来说,这是一份非常有价值的资源。
2018-06-21 上传
BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)天生就是为处理超大规模(至少要让你的内存容不下)的数据集而设计的,它可以在任何给定的内存下运行。关于BIRCH的更多特点先不介绍,我先讲一下算法的完整实现细节,对算法的实现过程搞清楚后再去看别人对该算法的评价才会感受深刻。 你不需要具备B树的相关知识,我接下来会讲得很清楚。 BIRCH算法的过程就是要把待分类的数据插入一棵树中,并且原始数据都在叶子节点上。这棵树看起来是这个样子: 在这棵树中有3种类型的节点:Nonleaf、Leaf、MinCluster,Root可能是一种Nonleaf,也可能是一种Leaf。所有的Leaf放入一个双向链表中。每一个节点都包含一个CF值,CF是一个三元组,其中data point instance的个数,和是与数据点同维度的向量,是线性和,是平方和。比如有一个MinCluster里包含3个数据点(1,2,3),(4,5,6),(7,8,9),则 N=3, =(1+4+7,2+5+8,3+6+9)=(12,15,18), =(1+16+49,4+25+64,9+36+81)。 就拿这个MinCluster为例,我们可以计算它的 簇中心 簇半径 簇直径 我们还可以计算两个簇之间的距离,当然你也可以使用D0,D1,D3等等,不过在这里我们使用D2。 有意思的是簇中心、簇半径、簇直径以及两簇之间的距离D0到D3都可以由CF来计算,比如 簇直径 簇间距离,这里的N,LS和SS是指两簇合并后大簇的N,LS和SS。所谓两簇合并只需要两个对应的CF相加那可 CF1 + CF2 = (N1 + N2 , LS1 + LS2, SS1 + SS2) 每个节点的CF值就是其所有孩子节点CF值之和,以每个节点为根节点的子树都可以看成 是一个簇。 Nonleaf、Leaf、MinCluster都是有大小限制的,Nonleaf的孩子节点不能超过B个,Leaf最多只能有L个MinCluster,而一个MinCluster的直径不能超过T。 算法起初,我们扫描数据库,拿到第一个data point instance--(1,2,3),我们创建一个空的Leaf和MinCluster,把点(1,2,3)的id值放入Mincluster,更新MinCluster的CF值为(1,(1,2,3),(1,4,9)),把MinCluster作为Leaf的一个孩子,更新Leaf的CF值为(1,(1,2,3),(1,4,9))。实际上只要往树中放入一个CF(这里我们用CF作为Nonleaf、Leaf、MinCluster的统称),就要更新从Root到该叶子节点的路径上所有节点的CF值。 当又有一个数据点要插入树中时,把这个点封装为一个MinCluster(这样它就有了一个CF值),把新到的数据点记为CF_new,我们拿到树的根节点的各个孩子节点的CF值,根据D2来找到CF_new与哪个节点最近,就把CF_new加入那个子树上面去。这是一个递归的过程。递归的终止点是要把CF_new加入到一个MinCluster中,如果加入之后MinCluster的直径没有超过T,则直接加入,否则譔CF_new要单独作为一个簇,成为MinCluster的兄弟结点。插入之后注意更新该节点及其所有祖先节点的CF值。 插入新节点后,可能有些节点的孩子数大于了B(或L),此时该节点要分裂。对于Leaf,它现在有L+1个MinCluster,我们要新创建一个Leaf,使它作为原Leaf的兄弟结点,同时注意每新创建一个Leaf都要把它插入到双向链表中。L+1个MinCluster要分到这两个Leaf中,怎么分呢?找出这L+1个MinCluster中距离最远的两个Cluster(根据D2),剩下的Cluster看离哪个近就跟谁站在一起。分好后更新两个Leaf的CF值,其祖先节点的CF值没有变化,不需要更新。这可能导致祖先节点的递归分裂,因为Leaf分裂后恰好其父节点的孩子数超过了B。Nonleaf的分裂方法与Leaf的相似,只不过产生新的Nonleaf后不需要把它放入一个双向链表中。如果是树的根节点要分裂,则树的高度加1。