【【Tensorflow2.0】】Tensorflow2.0的安装教程的安装教程
anaconda 可以使可以使tensorflow的安装变的简单的安装变的简单
昨天tensorflow 开发者大会刚开完,会上发布了关于 TensorFlow 2.0,TensorFlow Lite,TensorFlow.js,Swift for TensorFlow,TFX 等产品生态体系的最新更新和首次发布的内
容,2019年仍会支持tensorflow1.x,但是我们相信,版本的升级会带来易用性和使用性能的提升,特别是tensorflow1.x 开发api的混乱,有slim、tf.layers, tf.contrib 后期版本有tf.keras
,还有读数据方式,都特别麻烦,所以本文章基于linux系统提供安装方法(Windows系统安装anaconda以后也可以使用该教程)。
首先安装anaconda
这个直接官网去下载就可以了,可以是安装anaconda 或miniconda,我选择miniconda,这样不会把大量用不到的python包都安装了,而是根据需求,后期自己安装。
下载miniconda ,基本一路回车安装完成就可以,然后配置下载源来使国内镜像加速下载:
(时代在变化,社会在发展,anaconda不再有国内的加速镜像,所以以下添加清华源的命令就不要执行了!!,用默认的官方源也是可以使用的,更改于2019年7月2日)
#优先命名用清华conda 镜像
conda config --prepend channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
创建一个环境,用来安装tensorflow2.0以及相关的python packages.
#加上cudatoolkit and cudnn这样不论你的机器原来装的是否合适,都可以用tensorflow2.0gpu版本
conda create -n tf2 python=3.6
激活创建的环境,安装tensorflow2.0
#激活环境
source activate tf2
#对于GPU版的安装,为保证不论原始linux环境是什么样的都可以安装,如果原系充已经符合,以下命令不用执行
conda install cudatoolkit=10 cudnn=7.6 #目前tf2.0不支持cuda10.1(对应cudnn7.6),官网要求cuda=10,cudnn>7.4
#对于CPU版本,上边这行命令是不需要执行的
#接下来安装tensorflow 有多种情形
conda install tensorflow #安装tensorflow cpu稳定版本
conda install tensorflow-gpu#安装ensorflow gpu稳定版本
#使用这前可以使用 conda serach tensorflo 或conda search tensorflow-gpu来查询都有那些版本
#可以初装指定版本 conda install tensorflow=1.5 tensorflow 1.5版本
#如果安装错了可以使用conda uninstall tensorflow卸载后再重新安装
#接下来是要安装是新的tensorflow版本,conda环境使用pip同样生效
pip install tf-nightly #cpu 版本
pip install tf-nightly-gpu#GPU版本
#本人网上查了具体的版本
pip install tf-nightly-2.0-preview#Install tf 2.0 preview CPU version
pip install tf-nightly-gpu-2.0-preview#Install tf 2.0 preview GPU version
以下于2019年7月2日更新部分,最近tensorflow2.0的由alpha到了beat版本,所以更新一下最新的安装方法(基础环境的搭建不变)
pip install --upgrade pip
pip install --upgrade tensorflow==2.0.0-beta1 #只是CPU版本
pip install --upgrade tensorflow-gpu==2.0.0-beta1#GPU 版本的
#关于测试安装是否成功的测试,与原来是一样的
#会输出2.0.0-beta1
于2019年8月24日再更,今早tensorflow再次更新:
pip install tensorflow==2.0.0rc0 # cpu version
pip install tensorflow-gpu==2.0.0rc0 #gpu version
#最近有了更新rc1版本更新,日期没有记
pip install tensorflow==2.0.0rc1 # cpu version
pip install tensorflow-gpu==2.0.0rc1 #gpu version
#tensorflow rc2版本更新于2019年9月25日,感觉正式版很快就要来了
#安装方法同上,更新内容参见https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0-rc2
#卸载旧版
pip uninstall tensorflow-gpu
pip install tensorflow-gpu==2.0.0rc2
rc的release candidate的意思,基本上是最后的可用于生产的版本,但仍然是测试。感觉有好多特性都有更新,具体的更新内容参见github上官方文档
以上就完成了tensorflow2.0的安装
2019年10月1日更新:tensorflow2.0版本正式发布,安装方法:
pip install --upgrade pip
pip install tensorflow-gpu==2.0.0
2019年10月25日更新,从今天开始,conda支持安装tensorflow2.0,有点小舒服。
conda search tensorflow #搜cpu版
conda search tensorflow-gpu#搜GPU版
#大家可以按需安装
conda install tensorflow-gpu=2.0.0 #各种必备包自动安装,
用conda 安装最好,可以判断所有安装包的版本间的兼容性,如果能安装那么肯定是兼容的。
官网cuda和cudnn要求如下:
linux上驱动要大于410.x,cuda版本只能是10,cudnn版本要大于7.4.
2020年1月10日再更,tensorflow2.1正式发布,有几点更新:
pip默认安装GPU版本,也就是说pip install tensorflow 与pip install tensorflow-gpu相同
tensorflow2.1 支持 cuda 10.1和cudnn 7.6,也就是说在以后可以在同一个环境中同时安装tensorflow(2.1),pytorch(1.3.1),mxnet(1.5.1),因为这三深度学习库都支持cuda 10.1.