贝叶斯派与频率派:一场统计学的经典对话

需积分: 10 1 下载量 192 浏览量 更新于2024-09-11 收藏 1.04MB PDF 举报
《贝叶斯主义者、频率派与科学家:一场统计学视角的对话》是布拉德利·埃弗龙(Bradley Efron)撰写并在2005年3月发表在《美国统计学会杂志》(Journal of the American Statistical Association)上的一篇论文,该刊由泰勒与弗朗西斯有限公司(Taylor & Francis, Ltd.) 和美国统计协会共同发行。这篇重要的学术文章探讨了统计学领域中的两大主要流派——频率派和贝叶斯学派,它们分别是基于统计经验的频率主义方法论和依赖先验信念的主观概率理论。 频率派,也被称为经验主义,其核心观点是通过观察大量实验或试验结果来确定事件发生的概率,强调可观察数据的频次。他们的主要工具是概率分布和假设检验,如正态分布、t检验等。频率派的方法论强调客观性和可重复性,但可能对数据的缺失或者小样本情况下的解释有所限制。 相反,贝叶斯学派以托马斯·贝叶斯(Thomas Bayes)的名字命名,认为概率是一种反映先验知识的概率陈述,即在观察到新证据之前关于事件可能性的信念。贝叶斯方法强调模型的适应性和不确定性,通过贝叶斯公式更新先验概率以得出后验概率,这在处理不确定性和复杂性时具有优势。然而,它也可能受到主观性的影响,因为先验分布的选择可能因人而异。 在这篇论文中,作者Efron深入剖析了这两种方法论的优缺点,以及它们在实际科学问题中的应用。他探讨了如何在两者之间取得平衡,尤其是在现代数据科学和机器学习中,随着大数据的兴起,贝叶斯方法的灵活性和适应性变得更加重要,但它仍需与严格的频率方法相结合,确保结果的可靠性和可验证性。 文章还可能涉及统计学的其他方面,如模型选择、假设检验的合理性、以及两种方法在处理模型复杂性和不确定性时的比较。此外,它可能会提到如何利用现代计算机技术(如MCMC方法)来实现复杂的贝叶斯分析,并讨论了统计教育和实践中的哲学争议。 这篇文章是对统计学历史上两个核心观点的重要贡献,对于理解统计学的发展脉络,特别是对那些在机器学习和数据分析等领域工作的专业人士来说,是一份不可或缺的参考资料。同时,它也提醒我们,在面对现实世界的数据挑战时,理解和掌握这两种方法的精髓是至关重要的。
2018-02-22 上传
Bayesian statistics has been around for more than 250 years now. During this time it has enjoyed as much recognition and appreciation as disdain and contempt. Through the last few decades it has gained more and more attention from people in statistics and almost all other sciences, engineering, and even outside the walls of the academic world. This revival has been possible due to theoretical and computational developments. Modern Bayesian statistics is mostly computational statistics. The necessity for exible and transparent models and a more interpretation of statistical analysis has only contributed to the trend. Here, we will adopt a pragmatic approach to Bayesian statistics and we will not care too much about other statistical paradigms and their relationship to Bayesian statistics. The aim of this book is to learn about Bayesian data analysis with the help of Python. Philosophical discussions are interesting but they have already been undertaken elsewhere in a richer way than we can discuss in these pages. We will take a modeling approach to statistics, we will learn to think in terms of probabilistic models, and apply Bayes' theorem to derive the logical consequences of our models and data. The approach will also be computational; models will be coded using PyMC3—a great library for Bayesian statistics that hides most of the mathematical details and computations from the user. Bayesian methods are theoretically grounded in probability theory and hence it's no wonder that many books about Bayesian statistics are full of mathematical formulas requiring a certain level of mathematical sophistication. Learning the mathematical foundations of statistics could certainly help you build better models and gain intuition about problems, models, and results. Nevertheless, libraries, such as PyMC3 allow us to learn and do Bayesian statistics with only a modest mathematical knowledge, as you will be able to verify by yourself throughout this book.