ATI Stream Computing 用户指南

4星 · 超过85%的资源 需积分: 6 23 下载量 57 浏览量 更新于2024-08-02 1 收藏 2.59MB PDF 举报
"ATI Stream Computing 使用手册 Rev1.4.0a" ATI Stream Computing 是一项技术,由AMD(Advanced Micro Devices)推出,旨在利用GPU(图形处理器)的并行处理能力来加速非图形计算任务,例如科学计算、视频转码、图像处理等。这个用户指南是针对 April 2009 版本的,提供了如何有效地利用 ATI GPU 进行流式计算的详细指导。 ATI Stream Computing 的核心理念是通过GPU进行通用计算(GPGPU,General-Purpose computing on Graphics Processing Units),它打破了GPU的传统角色,不再仅限于图形渲染,而是扩展到了高性能计算领域。AMD的GPU,如Radeon和FireStream系列,被设计成能够处理大量的并行计算任务,这在处理大数据集和复杂算法时尤其有用。 在使用手册中,你可能会找到以下几个关键知识点: 1. **GPU编程模型**:介绍如何使用OpenCL、C++ AMP(仅限微软平台)或其他编程接口来编写能够利用GPU的并行计算能力的应用程序。OpenCL是跨平台的API,允许开发者编写可移植到多种GPU和CPU的代码。 2. **硬件架构**:详细解释了AMD GPU的硬件架构,包括流处理器(Stream Processors)、内存系统和数据传输机制,帮助开发者理解如何优化代码以最大限度地利用硬件资源。 3. **性能优化**:提供了一系列的性能优化技巧,如内存管理、数据对齐、并行化策略等,以提升GPU计算的效率。 4. **案例研究**:可能包含了一些实际应用示例,比如物理模拟、图像处理和加密解密等,帮助开发者理解如何将理论知识应用于实际项目。 5. **开发工具和库**:介绍AMD提供的开发工具,如AMD APP SDK(Accelerated Parallel Processing Software Development Kit),以及相关的数学库和算法库,如ACML(AMD Core Math Library)。 6. **兼容性和系统要求**:详细列出了支持的硬件和软件环境,包括操作系统版本、驱动程序需求以及与其他软件的兼容性。 7. **错误排查和最佳实践**:提供了一些常见的问题解决方案,以及在开发和部署过程中应遵循的最佳实践。 请注意,由于此文档是2009年的版本,一些技术细节和API可能已过时,最新的AMD GPU可能支持更新的特性,如更高级的指令集和更高效的计算单元。在实际应用时,建议参考最新的开发者资源和SDK。
2014-05-24 上传
Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They also present all the essentials of OpenCL software performance optimization, including probing and adapting to hardware. Coverage includes Understanding OpenCL’s architecture, concepts, terminology, goals, and rationale Programming with OpenCL C and the runtime API Using buffers, sub-buffers, images, samplers, and events Sharing and synchronizing data with OpenGL and Microsoft’s Direct3D Simplifying development with the C++ Wrapper API Using OpenCL Embedded Profiles to support devices ranging from cellphones to supercomputer nodes Case studies dealing with physics simulation; image and signal processing, such as image histograms, edge detection filters, Fast Fourier Transforms, and optical flow; math libraries, such as matrix multiplication and high-performance sparse matrix multiplication; and more Source code for this book is available at https://code.google.com/p/opencl-book-samples/