利用Spark进行分布式计算以获取商业洞察
版权申诉
5星 · 超过95%的资源 196 浏览量
更新于2024-06-21
收藏 1.39MB PDF 举报
"藏经阁-Distributed Computing with Spark.pdf"
这篇文档是关于在企业环境中使用Apache Spark进行分布式计算的讨论,由Stephan Kessler在2016年Spark Summit Europe上发表。Stephan Kessler是SAP HANA Vora团队的一员,专注于将SAP引擎集成到Apache Spark中。演讲的核心关注点是企业如何克服数据利用率低、技能差距大以及如何从Hadoop中获取价值的挑战。
企业数据利用现状:
文档指出,大多数企业在其业务智能(BI)和分析中平均只使用了60%到73%的数据。这表明存在大量的未被挖掘的数据潜力。同时,技能缺口是57%受访者面临的重大采纳障碍,而49%的受访者在决定如何从Hadoop中获取价值方面感到困惑。这些数据引自Forrester Wave™: Big Data Hadoop Distributions, Q1 2016报告和Gartner的"Survey Analysis: Hadoop Adoption Drivers and Challenges"报告。
当前系统景观:
企业通常拥有包括SAP HANA平台和其他应用程序在内的系统架构。然而,存在以下几个问题:
1. 从商业应用的角度看,需要一种标准化的方式来访问大数据环境,并期望有与传统SQL类似的表达能力。
2. 从大数据/数据科学的角度,需要接入专门的引擎来靠近数据进行分析,并且希望实现这些引擎与现有系统的集成。
Apache Spark的角色:
Spark作为一个分布式计算框架,能够提供快速、通用和可扩展的数据处理能力。它可以作为解决上述挑战的一个工具,特别是在数据科学领域,Spark支持多种语言,如Python、Java和Scala,可以提供高性能的数据处理和分析。此外,Spark SQL提供了与SQL兼容的接口,使得业务用户能够以他们熟悉的方式查询大数据。
SAP HANA Vora的引入:
SAP HANA Vora是SAP为了解决上述问题而开发的一个产品,它旨在将Spark的功能与HANA的内存计算能力相结合,提供对Hadoop和其他大数据源的快速分析。Vora允许企业在不牺牲性能的情况下,对Hadoop中的数据进行更复杂的分析,同时提供了与现有SAP应用程序的集成。
总结:
"藏经阁-Distributed Computing with Spark"讨论了企业如何通过Apache Spark和SAP HANA Vora这样的工具克服大数据利用的挑战。Spark的分布式计算能力与HANA Vora的集成,为企业提供了一种更有效利用其数据并进行深度分析的方法,以获取更有价值的商业洞察。同时,这也强调了提升员工技能和优化数据分析流程的重要性。
2018-06-19 上传
2008-04-26 上传
2023-09-09 上传
2009-03-19 上传
2022-01-27 上传
2023-08-26 上传
2023-08-26 上传
2019-06-29 上传
weixin_40191861_zj
- 粉丝: 83
- 资源: 1万+
最新资源
- Aspose资源包:转PDF无水印学习工具
- Go语言控制台输入输出操作教程
- 红外遥控报警器原理及应用详解下载
- 控制卷筒纸侧面位置的先进装置技术解析
- 易语言加解密例程源码详解与实践
- SpringMVC客户管理系统:Hibernate与Bootstrap集成实践
- 深入理解JavaScript Set与WeakSet的使用
- 深入解析接收存储及发送装置的广播技术方法
- zyString模块1.0源码公开-易语言编程利器
- Android记分板UI设计:SimpleScoreboard的简洁与高效
- 量子网格列设置存储组件:开源解决方案
- 全面技术源码合集:CcVita Php Check v1.1
- 中军创易语言抢购软件:付款功能解析
- Python手动实现图像滤波教程
- MATLAB源代码实现基于DFT的量子传输分析
- 开源程序Hukoch.exe:简化食谱管理与导入功能