"稀疏优化在机器学习中的若干应用及性能表现"
版权申诉
115 浏览量
更新于2024-03-01
收藏 9.72MB PDF 举报
Abstract
In recent years, exploring the sparsity of solutions and other special structures has become a common issue in many computational and engineering areas. Sparsity is much broader than just having few nonzero elements. This paper explores the applications of sparse optimization in machine learning, focusing on fuzzy support vector machine classification models and the proposed fuzzy silhouette index for updating the weights iteratively. The FC, RflikeF, and other performance metrics for ROC indices and identifying target PSM at the same FDR level have shown superior performance compared to mainstream posterior database search methods. This study highlights the significance of non-smooth optimization, sparse optimization, collaborative filtering, Lasso, homotopy algorithms, gene regularization networks, and peptide recognition in machine learning. This research, conducted for a doctoral dissertation at Dalian University of Technology, provides valuable insights into the practical applications of sparse optimization in various machine learning tasks.
Keywords: Non-smooth optimization, Sparse optimization, Collaborative filtering, Lasso, Homotopy algorithm, Gene regularization networks, Peptide recognition.
2022-07-01 上传
2022-07-01 上传
2022-07-01 上传
programyp
- 粉丝: 90
- 资源: 9323
最新资源
- 基于Python和Opencv的车牌识别系统实现
- 我的代码小部件库:统计、MySQL操作与树结构功能
- React初学者入门指南:快速构建并部署你的第一个应用
- Oddish:夜潜CSGO皮肤,智能爬虫技术解析
- 利用REST HaProxy实现haproxy.cfg配置的HTTP接口化
- LeetCode用例构造实践:CMake和GoogleTest的应用
- 快速搭建vulhub靶场:简化docker-compose与vulhub-master下载
- 天秤座术语表:glossariolibras项目安装与使用指南
- 从Vercel到Firebase的全栈Amazon克隆项目指南
- ANU PK大楼Studio 1的3D声效和Ambisonic技术体验
- C#实现的鼠标事件功能演示
- 掌握DP-10:LeetCode超级掉蛋与爆破气球
- C与SDL开发的游戏如何编译至WebAssembly平台
- CastorDOC开源应用程序:文档管理功能与Alfresco集成
- LeetCode用例构造与计算机科学基础:数据结构与设计模式
- 通过travis-nightly-builder实现自动化API与Rake任务构建