汉语数字语音识别系统的特征提取与端点检测分析
版权申诉
56 浏览量
更新于2024-04-04
收藏 969KB DOCX 举报
第二章 汉语数码语音的特征提取及端点检测方法分析
在语音识别系统中,模拟的语音信号在完成A/D转换后成为数字信号,但时域上的语音信号很难直接用于识别,因此我们需要从语音信号中提取语音的特征,一方面可以获得语音的本质特征,另一方面也起到数据压缩的作用。目前通用的特征提取方法是基于语音帧的,即将语音信号分为有重叠的若干帧,对每一帧提取kHz ms语音特征。例如采用的语音库采样率为11kHz,因此我们采用的帧长为220个采样点(即20ms),帧ms步长(即每一帧语音与上一帧语音不重叠的长度)为110个采样点(即10ms)。
现有语音识别系统采用的最主要的两种语音特征包括:
1. 线性预测倒谱系数(Linear Prediction Cepstrum Coefficient,LPCC)。该特征是基于语音信号为自回归信号的假设,利用线性预测分析获得倒谱系数。LPCC参数的优点是计算量小,对元音有较好的描述能力,其缺点在于对辅音的描述能力较差,抗噪声性能也较差。
2. Mel频标(Mel-frequency Cepstral Coefficient,MFCC)。MFCC是一种描述语音信号频谱特征的参数,它模拟了人耳对频谱的感知特性。MFCC参数可以较好地表示语音的频谱特征,对于噪声和语音识别的性能也相对较好。
在特征提取的基础上,需要进行端点检测,即确定语音信号的起始点和结束点。端点检测方法的主要目的是剔除语音信号中的静音段及非语音干扰,提高语音识别系统的准确性。
要进行端点检测,首先需要对语音信号进行预处理,如去除直流分量、增强信号峰值等。之后,可以采用以下几种方法进行端点检测:
1. 短时能量法。该方法通过计算每一帧语音信号的能量来判断语音的起始和结束点,当能量超过设定的阈值时认为是语音信号,否则认为是静音部分。
2. 过零率法。通过统计语音信号每一帧过零点的个数,当过零率超过设定的阈值时认为是语音信号的边界。
3. 立方差法。该方法结合了短时能量和过零率的信息,通过计算语音信号每一帧的立方差来确定语音信号的起始和结束点。
通过合理选择特征提取方法和端点检测方法,可以有效地提高汉语数码语音识别系统的准确性和稳定性。在实际应用中,还可以结合深度学习等新技术来进一步提升系统的性能,为语音识别技术的发展做出贡献。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2022-07-03 上传
2022-07-01 上传
2022-06-02 上传
2022-07-03 上传
竖子敢尔
- 粉丝: 1w+
- 资源: 2470
最新资源
- 深入浅出:自定义 Grunt 任务的实践指南
- 网络物理突变工具的多点路径规划实现与分析
- multifeed: 实现多作者间的超核心共享与同步技术
- C++商品交易系统实习项目详细要求
- macOS系统Python模块whl包安装教程
- 掌握fullstackJS:构建React框架与快速开发应用
- React-Purify: 实现React组件纯净方法的工具介绍
- deck.js:构建现代HTML演示的JavaScript库
- nunn:现代C++17实现的机器学习库开源项目
- Python安装包 Acquisition-4.12-cp35-cp35m-win_amd64.whl.zip 使用说明
- Amaranthus-tuberculatus基因组分析脚本集
- Ubuntu 12.04下Realtek RTL8821AE驱动的向后移植指南
- 掌握Jest环境下的最新jsdom功能
- CAGI Toolkit:开源Asterisk PBX的AGI应用开发
- MyDropDemo: 体验QGraphicsView的拖放功能
- 远程FPGA平台上的Quartus II17.1 LCD色块闪烁现象解析