深入理解PySpark:构建高效大数据处理系统

需积分: 9 7 下载量 26 浏览量 更新于2024-07-19 收藏 11.5MB PDF 举报
"Learning PySpark" 是一本由 Tomasz Drabas 编著的书籍,它在有限的学习资源中脱颖而出,提供了关于 PySpark 的全面学习资料。 本书主要涵盖了以下几个方面的内容: 1. 理解Spark - Apache Spark 是一个用于大数据处理的开源计算框架,以其快速、通用和可扩展性而闻名。 - Spark Jobs和APIs 书中会介绍如何使用Spark的API来编写数据处理任务。 - 执行过程 Spark的工作流程包括提交作业、分布式执行和结果返回等步骤。 - Resilient Distributed Dataset (RDD) 是Spark的基本数据抽象,它是一个容错的、分布式的内存数据集合。 - DataFrames 和 Datasets 提供了更高级别的数据操作接口,方便进行结构化数据处理。 - Catalyst Optimizer 是Spark SQL的查询优化器,用于提升查询性能。 - Project Tungsten 目标是通过底层优化提高Spark的内存管理效率。 - Spark 2.0架构 引入了重要的改进,包括统一的DataFrame和Dataset API以及SparkSession接口。 - Tungsten阶段2 进一步提升了数据处理的性能。 - Structured Streaming 支持流式处理,提供连续应用程序的能力。 2. Resilient Distributed Datasets (RDD) - 内部工作原理 书中深入解析了RDD的创建、存储和操作机制。 - 创建RDD 可以通过并行化现有数据或从文件中读取数据来创建。 - 模式 RDD可以有模式,即包含元数据信息,帮助处理结构化数据。 - 从文件读取 学习如何从不同格式的文件(如CSV、JSON)中加载数据。 - Lambda表达式 在Spark中,常用lambda函数进行数据转换。 - 全局与局部作用域 了解在Spark作业中变量的作用范围差异。 - 转换 如 `map`、`filter`、`flatMap`、`distinct`、`sample`、`leftOuterJoin` 和 `repartition` 是RDD的主要操作类型,用于改变数据集的结构。 - 动作 包括 `take` 方法,它用于从分布式数据集中获取一定数量的元素。 这本书适合对大数据处理感兴趣,希望通过PySpark学习和实现高效分析的读者。书中的约定部分可能包括代码风格、注释规范等内容,读者反馈章节鼓励读者提出意见和建议。Packt出版社提供了支持和服务,如示例代码下载、彩色图像获取和错误报告等。此外,书中还强调了对盗版的反对,并鼓励读者通过合法途径获取资源。最后,每章末尾的总结部分有助于巩固所学概念,而问题部分可能包含练习题或思考题,帮助读者深化理解。
2017-05-12 上传
About This Book, Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0Develop and deploy efficient, scalable real-time Spark solutionsTake your understanding of using Spark with Python to the next level with this jump start guide, Who This Book Is For, If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory., What You Will Learn, Learn about Apache Spark and the Spark 2.0 architectureBuild and interact with Spark DataFrames using Spark SQLLearn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectivelyRead, transform, and understand data and use it to train machine learning modelsBuild machine learning models with MLlib and MLLearn how to submit your applications programmatically using spark-submitDeploy locally built applications to a cluster, In Detail, Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark., You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command., By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications., Style and approach, This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.