利用R进行高性能编程:解决大数据分析难题

需积分: 9 5 下载量 193 浏览量 更新于2024-07-18 收藏 1.84MB PDF 举报
"R High Performance Programming 由 Aloysius Lim 和 William Tjhi 编著,这是一本关于提升R语言编程效率的原版PDF书籍,旨在帮助读者解决R语言在处理大数据时面临的性能问题。" R语言是当前数据科学领域广泛使用的工具,尤其在数据处理、统计分析方面表现突出。随着数据的重要性日益增加,企业和科研人员都需要有效的方法来处理大量数据。R语言起源于学术界,但现在已经渗透到各行各业,并在全球范围内广泛应用。 《R High Performance Programming》这本书深入探讨了如何克服R语言在性能上的困难,提供了一系列激动人心的技术和解决方案。作者Aloysius Lim和William Tjhi通过本书分享他们的专业知识,旨在帮助读者提高R语言代码的运行速度和效率,以应对大数据时代的挑战。 书中可能涵盖的内容可能包括: 1. 内存管理和优化:讨论如何有效地管理R中的数据结构,避免内存泄漏,以及如何使用向量化操作减少计算时间。 2. 并行计算:介绍如何利用多核处理器和分布式计算框架,如`parallel`包或`snow`包,进行并行化任务,从而显著提升计算速度。 3. C/C++接口:讲解如何使用`Rcpp`等库将R代码与C++结合,以利用编译型语言的高效性。 4. 数据输入/输出优化:讨论快速读写大文件的策略,如使用`data.table`包或`fread/fwrite`函数。 5. 包的选取和使用:推荐并解释适用于高性能计算的R包,如`data.table`、`dplyr`、`tidyverse`等。 6. 性能测试和基准:介绍如何使用`microbenchmark`和`rbenchmark`等工具来度量和比较代码的执行效率。 7. 算法优化:讨论更高效的算法实现,以减少计算时间和资源消耗。 8. 非标准评估(NSE)的注意事项:解释在使用如`dplyr`等包时,理解非标准评估的重要性,以及如何避免它可能导致的性能问题。 9. 调优技巧:提供关于代码重构和优化的一般原则,以提高代码的运行效率。 10. GPU编程:如果涉及,可能会涵盖如何利用GPU进行加速计算,如使用`cuda`或`OpenCL`相关的R包。 这本书对于那些希望充分利用R语言处理大规模数据的开发者和数据科学家来说是一份宝贵的资源。通过学习和应用书中的技巧,读者可以提升R代码的性能,使其在大数据时代更加得心应手。同时,出版商Packt Publishing提醒,尽管他们尽力确保书中的信息准确,但不承担因使用本书内容而产生的直接或间接损害的责任。
2019-03-08 上传
Hands-On High Performance Programming with Qt 5: Build cross-platform applications using concurrency, parallel programming, and memory management Author: Marek Krajewski Pub Date: 2019 ISBN: 978-1789531244 Pages: 384 Language: English Format: EPUB Size: 17 Mb Build efficient and fast Qt applications, target performance problems, and discover solutions to refine your code Achieving efficient code through performance tuning is one of the key challenges faced by many programmers. This book looks at Qt programming from a performance perspective. You’ll explore the performance problems encountered when using the Qt framework and means and ways to resolve them and optimize performance. The book highlights performance improvements and new features released in Qt 5.9, Qt 5.11, and 5.12 (LTE). You’ll master general computer performance best practices and tools, which can help you identify the reasons behind low performance, and the most common performance pitfalls experienced when using the Qt framework. In the following chapters, you’ll explore multithreading and asynchronous programming with C++ and Qt and learn the importance and efficient use of data structures. You’ll also get the opportunity to work through techniques such as memory management and design guidelines, which are essential to improve application performance. Comprehensive sections that cover all these concepts will prepare you for gaining hands-on experience of some of Qt’s most exciting application fields – the mobile and embedded development domains. By the end of this book, you’ll be ready to build Qt applications that are more efficient, concurrent, and performance-oriented in nature What you will learn Understand classic performance best practices Get to grips with modern hardware architecture and its performance impact Implement tools and procedures used in performance optimization Grasp Qt-specific work techniques for graphical user interface (GUI) and platform programming Make Transmission Control Protocol (TCP) and Hypertext Transfer Protocol (HTTP) performant and use the relevant Qt classes Discover the improvements Qt 5.9 (and the upcoming versions) holds in store Explore Qt’s graphic engine architecture, strengths, and weaknesses