帕金森遗传风险:参数与贝叶斯分析揭示五类家庭发病率

2 下载量 115 浏览量 更新于2024-09-02 收藏 799KB PDF 举报
帕金森氏病(PD)是一种常见的神经系统退行性疾病,其发病机制复杂,遗传因素被认为是重要的风险因素之一。这篇2018年发表在《帕金森病进展》(Advances in Parkinson's Disease)期刊上的论文,通过对五类家庭类型的参数分析和贝叶斯估计,深入探讨了遗传在PD发病中的作用。这五类家庭包括: 1. PD病史阴性的家庭(I),即父母均未患帕金森病。 2. 父母中至少一方有帕金森病历史,但没有明确患病的记录的家庭(II)。 3. 只有一方父母确诊为帕金森病的家庭(III-IV)。 4. 双亲均被诊断为帕金森病的家庭(V)。 作者们运用了复杂的数据建模技术,结合最大似然法和贝叶斯方法,来精确地估算在这些不同家庭背景下个体罹患帕金森氏病的概率。最大似然法是一种常用的数据分析方法,通过最大化观测数据与理论模型的匹配度来估计模型参数;而贝叶斯分析则引入了先验知识,将数据和先前的信息结合起来,得出更为全面的估计结果。 研究的重要性在于,它提供了基于实际数据的统计模型,能够帮助人们理解遗传对PD风险的具体影响,从而鼓励个人采取预防措施并进行遗传咨询。对于携带帕金森病基因风险的人群,了解这些风险可以帮助他们做出更明智的生活方式选择,例如定期体检、健康饮食、运动和可能的基因检测。 尽管临床医生在给出PD风险评估时可能会提供医学意见,但这项研究的定量分析为医疗决策提供了科学依据。这项工作填补了帕金森病遗传风险研究领域的空白,为未来可能的遗传干预和预防策略提供了基础。
2018-11-13 上传
Bayesian model selection is a fundamental part of the Bayesian statistical modeling process. In principle, the Bayesian analysis is straightforward. Specifying the data sampling and prior distributions, a joint probability distribution is used to express the relationships between all the unknowns and the data information. Bayesian inference is implemented based on the posterior distribution, the conditional probability distribution of the unknowns given the data information. The results from the Bayesian posterior inference are then used for the decision making, forecasting, stochastic structure explorations and many other problems. However, the quality of these solutions usually depends on the quality of the constructed Bayesian models. This crucial issue has been realized by researchers and practitioners. Therefore, the Bayesian model selection problems have been extensively investigated. The Bayesian inference on a statistical model was previously complex. It is now possible to implement the various types of the Bayesian inference thanks to advances in computing technology and the use of new sampling methods, including Markov chain Monte Carlo (MCMC). Such developments together with the availability of statistical software have facilitated a rapid growth in the utilization of Bayesian statistical modeling through the computer simulations. Nonetheless, model selection is central to all Bayesian statistical modeling. There is a growing need for evaluating the Bayesian models constructed by the simulation methods.