Python金融分析实操视频课程:从入门到精通

需积分: 10 0 下载量 58 浏览量 更新于2024-11-05 收藏 685KB ZIP 举报
资源摘要信息: "Hands-on-Python-for-Finance-V: Packt上的Python实操[视频],由Packt发布" 该资源是一套由Packt出版的Python实操视频课程,专注于应用Python语言解决金融领域的定量分析问题。视频课程旨在帮助有志于金融分析的开发人员和定量分析师入门Python编程,并深入理解在金融分析中使用的各种工具和技术。 知识点概述如下: 1. Python入门和数据结构:课程首先介绍Python的基础知识,包括编程语法、数据类型、变量、控制流(如循环和条件语句)以及函数。此外,还会介绍Python中的各种数据结构,例如列表、元组、字典和集合,这些都是进行复杂金融数据分析的基础工具。 2. 第三方库的深入学习:在掌握Python基础后,课程将引导学习者深入了解并应用一系列专门用于金融分析的Python库。这些库可能包括Pandas(用于数据处理和分析)、NumPy(用于数值计算)、SciPy(用于科学计算)以及Matplotlib和Seaborn(用于数据可视化)。 3. 时间序列分析:课程讲解如何使用Python对时间序列数据进行操作和分析,这对于理解金融市场的动态至关重要。涉及的主题可能包括时间序列数据的读取、处理、绘图、周期性检测以及趋势和季节性分析等。 4. 金融概念的Python实现:包括时间序列评估、预测、线性回归等统计和金融概念。学习者将通过Python代码掌握如何对金融市场数据进行建模和预测,以及如何使用线性模型来预测资产价格。 5. 风险管理与投资组合构建:课程将指导学习者如何使用Python计算风险价值(Value at Risk, VaR),这是衡量投资风险的一种方法。同时,还会介绍相关性和投资组合构建的基本概念,以及如何使用Python进行优化分析。 6. 蒙特卡洛模拟:蒙特卡洛模拟是一种通过随机抽样和统计分析来预测可能结果的概率模拟方法。课程将详细讲解如何在金融领域应用蒙特卡洛模拟来模拟投资组合价值和其他金融变量,并通过大量的实际示例使学习者获得实践体验。 7. Jupyter Notebook的使用:标签中提到的Jupyter Notebook是一个开源的Web应用程序,允许用户创建和共享包含代码、方程、可视化和解释性文本的文档。它是金融数据分析和教学中常用工具,能方便地展示和解释复杂的金融模型和分析结果。 整个课程旨在通过理论学习与实践案例相结合的方式,让学习者能够掌握运用Python解决金融问题的能力,特别是数据分析和量化投资领域的实践技巧。 视频课程的文件名称列表为“Hands-on-Python-for-Finance-V-master”,暗示该资源包含了一个主项目文件夹,其中包含了用于本课程所有项目和练习所需的文件。学习者可以通过访问这些文件,结合视频教程,逐步构建自己的Python金融分析技能集。
2019-07-19 上传
Learn and implement quantitative finance using popular Python libraries like NumPy, pandas, and Keras Key Features Understand Python data structure fundamentals and work with time series data Use popular Python libraries including TensorFlow, Keras, and SciPy to deploy key concepts in quantitative finance Explore various Python programs and learn finance paradigms Book Description Python is one of the most popular languages used for quantitative finance. With this book, you'll explore the key characteristics of Python for finance, solve problems in finance, and understand risk management. The book starts with major concepts and techniques related to quantitative finance, and an introduction to some key Python libraries. Next, you'll implement time series analysis using pandas and DataFrames. The following chapters will help you gain an understanding of how to measure the diversifiable and non-diversifiable security risk of a portfolio and optimize your portfolio by implementing Markowitz Portfolio Optimization. Sections on regression analysis methodology will help you to value assets and understand the relationship between commodity prices and business stocks. In addition to this, you'll be able to forecast stock prices using Monte Carlo simulation. The book will also highlight forecast models that will show you how to determine the price of a call option by analyzing price variation. You'll also use deep learning for financial data analysis and forecasting. In the concluding chapters, you will create neural networks with TensorFlow and Keras for forecasting and prediction. By the end of this book, you will be equipped with the skills you need to perform different financial analysis tasks using Python
2019-05-19 上传
eBook Description: Hands-On Python for Finance: Learn and implement quantitative finance using popular Python libraries like NumPy, pandas, and Keras Python is one of the most popular languages used for quantitative finance. With this book, you’ll explore the key characteristics of Python for finance, solve problems in finance, and understand risk management. The book starts with major concepts and techniques related to quantitative finance, and an introduction to some key Python libraries. Next, you’ll implement time series analysis using pandas and DataFrames. The following chapters will help you gain an understanding of how to measure the diversifiable and non-diversifiable security risk of a portfolio and optimize your portfolio by implementing Markowitz Portfolio Optimization. Sections on regression analysis methodology will help you to value assets and understand the relationship between commodity prices and business stocks. In addition to this, you’ll be able to forecast stock prices using Monte Carlo simulation. The book will also highlight forecast models that will show you how to determine the price of a call option by analyzing price variation. You’ll also use deep learning for financial data analysis and forecasting. In the concluding chapters, you will create neural networks with TensorFlow and Keras for forecasting and prediction. By the end of this Hands-On Python for Finance book, you will be equipped with the skills you need to perform different financial analysis tasks using Python.