线性系统辨识与自适应控制:第3讲-最小二乘法

需积分: 9 8 下载量 4 浏览量 更新于2024-07-31 收藏 564KB PPT 举报
"系统辨识及自适应控制课件第三讲涵盖了系统辨识的基础知识,主要讲解了系统和模型的概念,辨识的定义、步骤,以及线性系统辨识问题的表达形式和最小二乘格式。课程聚焦于线性系统的模型类和线性模型的选择,同时介绍了基于ARX模型的最小二乘法建模方法。" 系统辨识是控制理论中的一个重要分支,它涉及对物理系统的数学模型进行估计和构建,以便更好地理解和预测系统的行为。本讲主要围绕以下几个核心知识点展开: 1. **系统和模型**:在工程应用中,当输入信号在工作点附近变化不大时,许多系统可以近似视为线性系统。线性系统是指输出与输入之间存在线性关系的系统。线性模型类包括一组待确定的参数,可以用来拟合实际系统的行为。 2. **辨识的定义和三要素**:辨识是通过实验数据来确定系统模型的过程,主要包括三个要素:实验设计(输入信号的选择)、数据处理和模型结构选择。 3. **线性系统辨识问题的表达形式**:线性系统辨识通常采用最小二乘格式,寻找使得预测误差平方和最小的参数值。这种表达形式可以清晰地表示出模型与实际数据之间的拟合关系。 4. **最小二乘格式**:在ARX(AutoRegressive eXogenous)模型中,最小二乘法是一种常用的参数估计方法。ARX模型描述了系统输出如何依赖于过去的输入和输出值。最小二乘法通过最小化预测误差的平方和来估计模型参数,简化了模型求解过程。 5. **ARX模型**:ARX模型的结构为输出y_k与过去n个输入u_k和输出z_k的函数关系,即y_k = a_1*z_{k-1} + ... + a_n*z_{k-n} + b_1*u_{k-1} + ... + b_m*u_{k-m}。通过最小二乘法,可以找到最佳的系数a_i和b_j,使得模型输出与实际输出的误差最小。 通过这些基础知识的学习,可以为后续的自适应控制打下坚实的基础。自适应控制是一种动态调整控制器参数的方法,使其能够自动适应系统参数的变化或未知特性,从而实现对系统的有效控制。在实际工程应用中,系统辨识与自适应控制相结合,能够提高控制系统性能和鲁棒性。