R语言在金融大数据分析中的应用与量化交易工具

需积分: 9 13 下载量 2 浏览量 更新于2024-07-21 收藏 3.57MB PDF 举报
"《R在金融数据分析中的应用》是一篇由吴牧恩教授撰写的文章,针对东吴大学数学系的研究,重点探讨了如何利用R语言进行金融数据分析。文章强调了金融交易数据的规模,特别是Tickdata(高频交易数据),这些数据具有实时性、低延迟,且包含了历史走势记录,如秒、分、时、日、周、月的金融行情以及券商数据库等详细信息。作者指出,对于投资者或策略开发者来说,他们可能面临的挑战包括策略测试的损益评估、软件成本和编程技能的限制。 文章提到了Quantitative analysis packages hierarchy,其中特别推荐了强大的R语言Finance套件,如quantmod,这个套件可以方便地从Yahoo Finance下载股票价格,如苹果公司的股价,并导入xts、zoo和TTR等包进行数据处理。数据获取通常来自报价源,例如周K线和月K线,这些数据格式可以用于构建技术分析指标,如布林通道、移动平均线(如20日和60日均线)、相对强弱指数(RSI)、指数平滑异同移动平均线(MACD)和抛物线型的SAR(停损点反转指标)。 在交易策略的研发过程中,作者举例了一个基于均线的简单策略:当20日均线大于60日均线时买入(满仓操作),反之则保持空仓。然而,实际的交易策略往往更复杂,需要包括策略的架构(Setup)、触发信号(Trigger)和跟进(Follow-through)等步骤。 《R在金融数据分析之应用》展示了R语言在金融领域中的实用性和灵活性,帮助读者克服数据处理和策略验证的难题,通过R工具进行高效、低成本的金融数据分析。"
2017-05-10 上传
Processing and Analyzing Financial Data with R by Marcelo S. Perlin English | 1 May 2017 | ASIN: B071DTSCPS | 516 Pages | AZW3 | 3.76 MB This book introduces the reader to the use of R and RStudio as a platform for processing and analyzing financial data. The book covers all necessary knowledge for using R, from its installation in your computer to the organization and development of scripts. For every chapter, the book presents practical and replicable examples of R code, providing context and facilitating the learning process. Based on the material, the reader will learn how to download financial data from local files or the Internet, represent and process it using native objects in R, and create tables and figures to report the results in a technical document. The book is organized based on the author's practical experience in scientific research and includes instructions for using the best R packages for each purpose, such as xtable and texreg for reporting tables, dplyr in data processing, and ggplot2 in creating figures. After showing the capabilities of R in processing financial data, the last chapter presents three complete and reproducible examples of research in Finance. This book is recommended for researchers and students interested in learning how to use R. No prior knowledge of programming or finance is required to take advantage of this book. After finishing, the reader will have enough knowledge to develop their own scripts autonomously, producing academic documents or data analysis for public and private institutions.